

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

USING MODEL BASED SYSTEMS ENGINEERING AND
THE SYSTEMS MODELING LANGUAGE TO DEVELOP

SPACE MISSION AREA ARCHITECTURES

by

Dustin B. Jepperson

September 2013

Thesis Advisor: Mark Rhoades
Second Reader: Kristin Giammarco

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2013

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
USING MODEL BASED SYSTEMS ENGINEERING AND THE SYSTEMS
MODELING LANGUAGE TO DEVELOP SPACE MISSION AREA
ARCHITECTURES

5. FUNDING NUMBERS

6. AUTHOR(S) Dustin B. Jepperson
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Los Angeles Air Force Base – Space and Missiles Systems Center
483 North Aviation Blvd
El Segundo CA 90245

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. government. IRB protocol number _NPS.2013.0069_.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release;distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
Model based systems engineering (MBSE) is explored as an alternative to the Department of Defense (DoD)’s heavily document-
driven processes for architecture development and acquisition management. MBSE can be employed to meet the standards set in
the DoD acquisition framework. Data exchange specifications, such as the application protocol 233 (AP233), can be implemented
to enable synergistic benefits to data analysis across the enterprise. Architecture development techniques, including the structured
analysis and design technique and the systems modeling language (SysML), are introduced to aid in the development and
assessment of space system mission area architectures, enabling rigorous mathematical analysis to support key programmatic
decisions. A detailed example of the application of SysML, in conjunction with MBSE principles, is provided for the Overhead
Persistent Infrared mission area, specifically the Space Based Infrared Surveillance System. A three-phase adoption approach is
recommended: first identify, list, and manage the configuration of all critical program models, processes, and tools used
throughout the DoD. Second, mandate a data exchange specification, such as the International Organization for Standardization
(10303 AP233 standard, across the DoD space acquisition community. Finally, further standardize the implementation of MBSE
practices through implementation of SysML. Heuristics for developing system architecture are provided.

14. SUBJECT TERMS Model Based Systems Engineering (MBSE), Systems Modeling Language
(SySML), Structured Analysis and Design Technique (SADT), Application Protocol 233 (AP233),
Department of Defense Architecture Framework (DoDAF), Space Mission Area System Architecture
(MASA), Overhead Persistent Infrared (OPIR), Space Based Infrared Surveillance System (SBIRS),
System Architecture Heuristics

15. NUMBER OF
PAGES

147
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

USING MODEL BASED SYSTEMS ENGINEERING AND THE SYSTEMS
MODELING LANGUAGE TO DEVELOP SPACE MISSION AREA

ARCHITECTURES

Dustin B. Jepperson
Captain, United States Air Force

B.S., University of Wisconsin, Madison, 2008

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS ENGINEERING MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
September 2013

Author: Dustin B. Jepperson

Approved by: Mark Rhoades, PhD
Thesis Advisor

Kristin Giammarco, PhD
Second Reader

Clifford Whitcomb, PhD
Chair, Department of Systems Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Model based systems engineering (MBSE) is explored as an alternative to the

Department of Defense (DoD)’s heavily document-driven processes for architecture

development and acquisition management. MBSE can be employed to meet the

standards set in the DoD acquisition framework. Data exchange specifications, such as

the application protocol 233 (AP233), can be implemented to enable synergistic benefits

to data analysis across the enterprise. Architecture development techniques, including

the structured analysis and design technique and the systems modeling language

(SysML), are introduced to aid in the development and assessment of space system

mission area architectures, enabling rigorous mathematical analysis to support key

programmatic decisions. A detailed example of the application of SysML, in conjunction

with MBSE principles, is provided for the Overhead Persistent Infrared mission area,

specifically the Space Based Infrared Surveillance System. A three-phase adoption

approach is recommended: first identify, list, and manage the configuration of all critical

program models, processes, and tools used throughout the DoD. Second, mandate a data

exchange specification, such as the International Organization for Standardization (10303

AP233 standard, across the DoD space acquisition community. Finally, further

standardize the implementation of MBSE practices through implementation of SysML.

Heuristics for developing system architecture are provided.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PROBLEM STATEMENT AND OBJECTIVE ...1
B. RESEARCH QUESTIONS ...4
C. BENEFITS OF STUDY ...4

II. DOD ACQUISITION AND SYSTEMS ENGINEERING PROCESSES5

III. MODEL BASED SYSTEMS ENGINEERING AND THE SYSTEMS
MODELING LANGUAGE FOR SYSTEMS ENGINEERING AND
ARCHITECTURE DEVELOPMENT ..13
A. SYSTEM MODELS ...15
B. MODEL BASED SYSTEMS ENGINEERING...16
C. SYSTEM ARCHITECTURE DESIGN AND DEVELOPMENT19
D. WHY FOCUS ON SYSTEM ARCHITECTURE AND TRADE

STUDIES? ..20
E. MODELING AND SIMULATION ..23
F. ANALYSIS OF ALTERNATIVES ..26
G. MBSE ARCHITECTURE TOOLS AND TECHNIQUES28

1. Department of Defense Architecture Framework (DoDAF)28
2. Structured Analysis and Design Technique30
3. Systems Modeling Language (SySML) ..36

a. History of SysML ..36
b. Overview of SysML ...37
c. SysML Purpose and Key Features ...40
d. SysML Support to Modeling and Simulation41
e. SysML Tools ..44

IV. CASE STUDY—OVERHEAD PERSISTENT INFRARED (OPIR)
MISSION AREA ARCHITECTURE ..47
A. PURPOSE ...47
B. SCOPE ..47
C. PROBLEM SUMMARY ...47
D. SYSML DIAGRAMS...48

1. Internal Block Diagram—System Context49
2. Use Case Diagram—Top Level ...50
3. Use Case Diagram—Operational Level ...51
4. Sequence Diagram—Initialize Black Box ..52
5. State Machine Diagram—Spacecraft Operational States53
6. Decomposed Sequence Diagrams ...54
7. Requirements Diagrams ..56
8. Activity Diagrams ..59
9. Block Definition Diagrams ..63
10. Parametric Diagrams and Performance Analysis71

E. ARCHITECTURE DEVELOPMENT—HEURISTICS80

 viii

V. IMPLEMENTATION OF MODEL BASED SYSTEMS ENGINEERING
AND ENTERPRISE SYSTEMS ENGINEERING TECHNIQUES AT THE
SPACE AND MISSILES SYSTEM CENTER ..81
A. TRANSITIONING TO MBSE..81
B. DATA EXCHANGE SPECIFICATIONS ...82
C. SMC REQUIREMENTS AND CURRENT TOOLS..................................84

1. Current SMC Tools and Processes ...84
2. SMC Requirements ..86

D. POTENTIAL VALUE OF MBSE AND DATA EXCHANGE
SPECIFICATION TO SMC ...88

E. BARRIERS AND LIMITATIONS ...90

VI. CONCLUSIONS AND RECOMMENDATIONS ...95
A. RESPONSE TO RESEARCH QUESTIONS ..95

1. What Methods, Techniques, and Processes can be Employed to
Aid in the Development of Mission Area Architectures for
Department of Defense (DoD) Space Systems?95

2. In What Ways or in What Instances Can Model Based Systems
Engineering (MBSE) be Used in the Development of Space
Based Mission Area Architectures for the DoD?95

3. How can the System Modeling Language (SysML), Based on
the Common Software Engineering Unified Modeling
Language (UML), be Applied to Aid in Developing Mission
Area Architectures for DoD Space Systems?96

B. PROCESS DISCUSSION ..96
1. Discussion of the Iterative and Recursive Nature of the

Synthesis Process ..96
2. Comments on the Use of MagicDraw ...97

C. CONCLUSIONS ..98
D. RECOMMENDATIONS ...98

1. Phase 1...99
2. Phase 2...99
3. Phase 3...100

E. FUTURE WORK ...100

APPENDIX. THE ART OF SYSTEM ARCHITECTURE—HEURISTICS ...103
1. Focus on User Interactions and Interfaces103

a. Discussion..103
2. Maximize Cohesion ..104

a. Discussion..105
3. Minimize Coupling...106

a. Discussion..106
4. Don’t Forget Implementation Planning ...107

a. Discussion..108
5. Cannot Optimize for all Stakeholders..108

a. Discussion..109
6. Diverse Perspectives...110

 ix

a. Discussion..110
7. Maximize Alternatives ...111

a. Discussion..111
8. Use Prototypes to Refine Requirements ..112

a. Discussion..113
9. Iterative and Recursive..114

a. Discussion..114
10. Modular Design ..115

a. Discussion..115

LIST OF REFERENCES ..117

INITIAL DISTRIBUTION LIST ...123

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. Department of Defense System Acquisition Framework (From
Department of Defense 2008) ..5

Figure 2. Notional Emphasis of Systems Engineering Processes Throughout the
Defense Acquisition System Life Cycle (From Defense Acquisition
University 2013e, Chapter 4) ...8

Figure 3. Department of Defense—Systems Engineering Technical Management
Processes (From Defense Acquisition University 2013f)9

Figure 4. Department of Defense—Defense Acquisition Management System
Technical “V” Activities (From Defense Acquisition University 2013f,
Defense Acquisition Management System) ...9

Figure 5. “V” Model Highlighting Phasing and Relationships Between Systems
Engineering Activities Conducted Throughout the Materiel Solution
Analysis Phase of the Defense Acquisition Framework (From Defense
Acquisition University 2013j)..10

Figure 6. Strength of Correlation Between Various Systems Engineering
Capabilities/Drivers and Overall Project Performance (From Elm and
Goldenson 2012, Executive Summary) ...21

Figure 7. Mosaic Chart Comparing Various Level of SEC-ARCH to Overall Project
Performance (From Elm and Goldenson 2012, 35) ...22

Figure 8. Mosaic Chart Comparing Various Level of SEC-TRD to Overall Project
Performance (From Elm and Goldenson 2012, 38) ...23

Figure 9. Benefits of Using Modeling and Simulation Throughout the Acquisition
Life Cycle (From Defense Acquisition University 2013c, 4.3.19.1)24

Figure 10. Various Applications of Modeling and Simulation Across the DoD
Acquisition Framework (From Defense Acquisition University 2013c,
4.3.19.1) ...25

Figure 11. Cost-Effectiveness Comparison—Sample Scatter Plot of Effectiveness vs.
Cost (From Defense Acquisition University 2013a, Chapter 3.3)27

Figure 12. DoD Architecture Framework v. 2.0—Viewpoint (From Department of
Defense 2009, 140) ..29

Figure 13. Components of the Structured Analysis and Design Technique (From Sage
and Rouse 2011, 485) ..31

Figure 14. IDEF0 Semantic Diagram (From Sage and Rouse 2011, 486)32
Figure 15. IDEF0 Activity Diagram—First Two Levels (From Sage and Rouse 2011,

487) ..33
Figure 16. Relationship of the Parts of Speech From Common Language to the

MBSE SDL (From Long and Zane 2011a, 38) ..35
Figure 17. Overview of the SysML and UML Interrelationship (From Object

Management Group, 7) ..37
Figure 18. SysML Diagram Taxonomy (From Object Management Group 2012, 167) ..39
Figure 19. Two Reusable Constraint Blocks Expressed on a SysML Block Definition

Diagram (From Friedenthal, Moore and Steiner 2012c, 189)41

 xii

Figure 20. Two Variants of a Camera for Handling Low-Light Conditions are
Defined Using a SysML Block Definition Diagram (From Friedenthal,
Moore and Steiner 2012c, 201) ..42

Figure 21. A SysML Block Definition Diagram Represents an Analysis Context,
Laying out a Trade Study for the Two Camera Variants (From Friedenthal,
Moore and Steiner 2012c, 201) ...43

Figure 22. Trade-off Results Between the Two Low-Light Camera Variants (From
Friedenthal, Moore and Steiner 2012c, 202) ...43

Figure 23. SysML Internal Block Diagram Establishing the Context of the OPIR
System Using a User-Defined Context Diagram ...50

Figure 24. SysML Use Case Diagram Establishing the Top Level Use Cases for the
SBIRS System Which Satisfies the OPIR Mission Area51

Figure 25. SysML Use Case Diagram Establishing the Operational Use Cases Which
Further Refine the “Fly the Spacecraft” Use Case...52

Figure 26. SysML Sequence Diagram Establishing the “Black Box” Top-Level Use
Cases and Their Interdependencies ..53

Figure 27. SysML State Machine Diagram Associated with the “Fly the Spacecraft”
Use Case...54

Figure 28. SysML Sequence Diagram Capturing the “Black Box” Interaction for the
“Initialize Spacecraft” Use Case ..55

Figure 29. SysML Sequence Diagram Capturing the “White Box” Interaction for the
“Initialize Spacecraft” Use Case ..56

Figure 30. SysML Requirements Diagram Establishing the OPIR Requirements
Hierarchy..57

Figure 31. SysML Requirements Diagram Establishing the Derived Requirements
and Rationale From the Lowest Tier of the Requirements Hierarchy58

Figure 32. SysML Requirements Diagram Capturing the Relationships for the
“Maneuver Capability” Requirement ..59

Figure 33. SysML Activity Diagram Highlighting the Behavior for the “Accelerate”
Function ...60

Figure 34. SysML Block Definition Diagram Decomposing the Activities Associated
with the “Accelerate” Function ..61

Figure 35. SysML Activity Diagram Providing a Detailed Behavior Model for the
“Provide Power” Activity/Function ...62

Figure 36. SysML Block Definition Diagram Defining the OPIR Domain63
Figure 37. SysML Block Definition Diagram Defining the Structure of the SBIRS

System ..64
Figure 38. SysML Internal Block Diagram Capturing the Internal Structure of the

SBIRS System ..65
Figure 39. SysML Block Definition Diagram Defining the Structure of the Power

Subsystem ..65
Figure 40. SysML Internal Block Diagram Defining the Internal Structure of the

Power Subsystem ...67
Figure 41. SysML Internal Block Diagram Identifying the Connectors into the CAN

Bus ...68

 xiii

Figure 42. SysML Internal Block Diagram Detailing the Flow Allocation to the
Power Subsystem ...69

Figure 43. SysML Block Definition Diagram Detailing the Definition of “Fuel Flow” ..70
Figure 44. SysML Internal Block Diagram Detailing the Internal Structure of the Fuel

Delivery Subsystem ...71
Figure 45. SysML Parametric Diagram Defining the Fuel Flow Constraints72
Figure 46. SysML Block Definition Diagram Defining the Analysis for the SBIRS

Engineering Development ...72
Figure 47. SysML Package Diagram Establishing the Performance View and

Viewpoint of the OPIR Model ...74
Figure 48. SysML Parametric Diagram Defining the Measures of Effectiveness and

Objective Function for Engineering Analysis..75
Figure 49. SysML Parametric Diagram Establishing the Mathematical Relationships

for Analysis ..76
Figure 50. SysML Parametric Diagram Detailing the “Orbital Mechanics”

Mathematical Model ..77
Figure 51. SysML Timing Diagram Showing Sample Results from a SysML

Parametric Analysis. This Example Summarizes Results from the
Maximum Acceleration Analysis ..78

Figure 52. SysML and AP233 Data Overlaps (From “SysML and Ap233 Mapping
Activity,” OMG SysML Portal Website 2010)..84

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF TABLES

Table 1. Department of Defense—Systems Engineering Processes (From Defense
Acquisition University 2013i, Chapter 4) ..7

Table 2. Comparison of Model Driven and Document Driven Approaches to
System Design (From Baker, Clemente, Cohen, Permenter, Purves, and
Salmon 2013) ...14

Table 3. Structured Analysis and Design Models, Diagrams, and Techniques (From
Long, 2010, 7) ..32

Table 4. Components of the SDL Mapped to MBSE Examples (From Long and
Zane 2011a, 37) ...34

Table 5. Department of Defense—Systems Engineering Processes (From Defense
Acquisition University 2013i)..83

Table 6. Summary of Key Air Force, DoD, and Federal Information Technology
Governing Directives ...92

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

LIST OF ACRONYMS AND ABBREVIATIONS

Alt Alternative

AoA Analysis of Alternatives

AP233 Application Protocol 233

CBAs Capability Based Assessments

CCaR Comprehensive Cost and Requirement System

CDD Capabilities Development Document

CONOPS Concept of Operations

CPD Capabilities Production Document

DoD Department of Defense

DoDAF Department of Defense Architecture Framework

DSP Defense Support Program

FFRDC Federally Funded Research and Development Center

GEO Geosynchronous Orbit

HEO Highly Elliptical Orbit

I/O Input/Output

ICD Initial Capabilities Document

IDEF0 Integrated DEFinition zero

INCOSE International Council on Systems Engineering

ISO International Organization for Standardization

LAAFB Los Angeles Air Force Base

MASA Mission Area System Architecture

MBSE Model Based Systems Engineering

MDA Model Driven Architecture

MOE Measure of Effectiveness

OMB Office of Management and Budget

OMG Object Management Group

OPIR Overhead Persistent InfraRed

OV-1 Operational View—1

PIM Program Independent Model

PLCM Product Life Cycle Management

 xviii

POR Program of Record

PSMs Platform Specific Models

RFP Request for Proposal

SADT Structured Analysis and Design Technique

SBIRS Space Based InfraRed System

SDS System Design Specification

SE Systems Engineering

SEC Systems Engineering Capability

SEC-ARCH Systems Engineering Capability—Architecture

SEC-ARCH Systems Engineering Capability—Architecture

SEC-Total Systems Engineering Capability—Total

SEC-TRD Systems Engineering Capability—Trade Studies

SEH Systems Engineering Handbook

SEP Systems Engineering Plan

SMART System Metric and Reporting Tool

SMC Space and Missiles Systems Center

SoS Systems-of-Systems

SysML Systems Modeling Language

TEMP Test and Evaluation Master Plan

UML Unified Modeling Language

USG United States Government

WBS Work Breakdown Structure

XMI Extensible Markup Language (XML) Metadata Interchange

 xix

EXECUTIVE SUMMARY

The objective of this thesis is to explore the potential benefits of using a model based

systems engineering (MBSE) approach, facilitated by a structured architecture modeling

language such as the Systems Modeling Language (SysML), to develop and employ

mission area architectures for Department of Defense (DoD) space systems. Recently,

the need to capture and develop comprehensive architectures for space mission areas

within the DoD has drastically increased. It is proposed that in order to respond to this

challenge, it is recommended that the DoD depart from its exclusive use of document-

driven processes for architecture and acquisition management and adopt a rigorous

technique such as MBSE.

MBSE is a formalized approach to modeling and architecting a system across the

full system lifecycle. MBSE can be employed to the standards set by the DoD

Architecture Framework (DoDAF), which provides the baseline structure and common

data meta-model specifications to develop mission area architectures for the DoD,

including space systems. Data exchange specifications, such as the ISO 10303

Application Protocol—233 (AP233) standard, can be implemented across a DoD

organization to standardize the exchange of architecture and system data between

otherwise stove-piped organizational components, enabling synergistic benefits to data

analysis across the enterprise. This thesis explores structured techniques, applications,

and languages that can be used to enable and aid in the development and assessment of

detailed space system architecture, capturing the detailed interactions and

interdependencies within and throughout a system and enabling rigorous mathematical

analysis to support key programmatic decisions and needs, including the Structured

Analysis and Design Technique and the SysML.

In order to realize the maximum benefits of MBSE including, enhanced

communications, reduced development risk, improved quality, increased productivity,

and enhanced knowledge transfer, a structured architecture development technique such

as the Structured Analysis and Design Technique (SADT) or SysML must be

implemented across the DoD space community and used to develop space based mission

 xx

area architectures. A detailed example of the application of SysML, in conjunction with

MBSE principles, is provided for the Overhead Persistent Infrared (OPIR) mission area,

and specifically modeled for the Space Based Infrared Surveillance System (SBIRS).

This SysML model, once complete and specified with mathematical relationships, can be

used to support rigorous engineering analysis. Powerful cost-effectiveness comparisons

can then be generated as part of an analysis of alternatives or trade study to inform

decision makers by answering the question: How well does any particular architecture

satisfy the mission requirements? Ultimately, the overall quality of a system acquisition

effort, or project, can be greatly improved through the application of MBSE architecture,

modeling and simulation, and trade study activities—all enabled by the development of

architecture using SysML.

Adopting MBSE and SysML for the design of DoD space systems will require a

fundamental paradigm shift in how the DoD does business, transitioning from what is

now a purely document-driven approach. Many potential barriers and limitations exist

that may limit or impede the introduction of MBSE practices and the application of

SysML. Therefore, a three phase approach is recommended in this thesis. The first

incremental phase is to identify, list, and manage the configuration of all critical program

models, processes, and tools used throughout the Space and Missile Systems Center

(SMC). The second recommended phase is to mandate a data exchange specification,

such as the AP233 standard, across the DoD space acquisition community to realize some

enterprise benefits and aid in the development of requirements for a more integrated and

structured approach such as SysML. Simply implementing a data exchange specification

would not fundamentally improve how information is managed at the component level,

however. Therefore, the third recommended phase is to further standardize the

implementation of MBSE practices by enforcing common processes, standards, models,

tools, and techniques across the community. As discussed within this paper, the SysML

modeling language is uniquely suited to meet this demand. It is clear that such a

paradigm shift is required if the DoD and SMC are to meet their requirements for greater

interoperability and ultimately deliver more successful systems through more effective

architecture development and acquisition efforts.

 xxi

ACKNOWLEDGMENTS

I would like to thank my advisors, Mark Rhoades, Kristin Giammarco, and Mary Vizzini

for all of their valuable feedback and support of my research and writing.

Of course, none of this would have been possible if not for the incredible support

of my loving wife, Laura, and the patience and never-ending inspiration provided by my

daughter, Chloe, and son, Rowan. And to my loving parents, Bruce and Rebecca, for

instilling in me the motivation to excel and never give up. For it is my family that

provides the stimulus that motivates everything I do.

 xxii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. PROBLEM STATEMENT AND OBJECTIVE

The Space and Missile Systems Center (SMC), Los Angeles Air Force Base

(LAAFB), California, is the Department of Defense’s (DoD) product center for the

Acquisition of all DoD space systems. SMC is organized into program offices

responsible for the program management and acquisition of specific space systems,

constellations, or portfolios of space systems, along with staff organizations that provide

oversight and guidance for all SMC program offices. Given the wide variety of space

systems being acquired by SMC and the fact that space systems are among the most

complex systems in existence, a great number of elaborate systems engineering and

program management tools and processes must be used by every organizational level of

SMC and its partners, including the prime and sub-contractors working with the program

office to design and build the systems.

Recently, the need to capture and develop comprehensive enterprise architectures

for space related mission areas within the DoD has drastically increased. This need is

driven by several factors, including the ever increasing complexity of space-based

systems-of-systems (SoS) that demand seamless coordination and operation across many

organizations and technical interfaces and an austere budget environment demanding that

space systems realize maximum efficiencies in the areas of cost, schedule, and

performance. A common method is needed to aid in developing and capturing enterprise

mission area architectures for use across the DoD space SoS enterprise and applying

these common architecture development techniques to all systems designed to operate

within the DoD space mission areas.

Typically, a great deal of effort is put forward within each DoD space mission

area to plan and develop new systems. The enterprise architectures describing these

systems are oftentimes overlooked or over-simplified, only to be later developed in detail

by future system acquisition efforts or out of necessity by the defense contractor(s) who

is (are) selected to develop and operate the system(s). For instance, although overhead

 2

infrared space systems have been in operations for over 40 years, enterprise architecture

descriptions and characterizations for the Overhead Persistent Infrared (OPIR) mission

area are just now being developed and shared across the mission area’s stakeholders.

Prior to recent efforts to capture enterprise mission area architectures, defense contractors

selected to develop and operate the legacy OPIR systems would individually develop,

build, operate, and maintain system level architectures for their system(s). This system-

specific architecture process has been all too common across the DoD space system

enterprise for all mission areas, not just OPIR. As a result, the individual system

architectures within a particular space related mission area are tied to specific systems

within the mission area, while an enterprise architecture capturing the aggregate of all

such systems and their related interfaces and inter-dependencies does not exist.

Furthermore, these individual system architectures are oftentimes developed and

maintained using different (sometimes unique or highly customized) applications,

processes, methods, and techniques.

As a result of this disconnect between system level and enterprise space mission

area architectures, it is difficult for a program office to capture the true enterprise mission

area architecture containing all related systems, therefore making the program office’s

job—that of planning and developing new future systems to fit within an existing

enterprise mission area architecture—quite challenging. In the case of the OPIR mission

area, legacy systems such as the Defense Space Program (DSP) and other Intelligence

Community sensors each have unique system level architectures which were developed

by different contractors, executed using unique processes, methods, and techniques, and

built with unique hardware and software sub-systems. While these individual system

level architectures are well understood by the contractors who built the systems, the

overall enterprise architecture containing these systems among others within the OPIR

mission area is not well understood. Consequently, when the space acquisition

community is studying and investigating follow-on systems to replace these legacy

platforms, such as the Space Based Infrared Surveillance (SBIRS) system, this lack of

detailed enterprise system of systems architecture characterization and understanding

limits the government’s ability to make fully educated and informed decisions about what

 3

capabilities and functions need to be performed by the new system of systems (SoS), how

legacy systems might be impacted by new systems, where commonality might exist

across the systems within the enterprise, and so on. Having a comprehensive

understanding of architecture considerations such as these is not only critically important

for conducting trade studies, developing systems, or managing any other systems

engineering activity, but is essential to understanding the impact on the overall cost,

schedule, and performance levels of the SoS enterprise (e.g., reducing unnecessary

redundancy and waste; reducing system level re-work; ensuring the enterprise of systems

as a whole most effectively and efficiently satisfies requirements).

Model based systems engineering is a discipline that prescribes configuration

controlled graphical models and views for use in managing the systems engineering

activities of a system. MBSE has been widely studied and applied as a powerful systems

engineering method, particularly as a tool to capture, develop, communicate, and manage

system architectures. A specific MBSE architecture format or modeling language,

however, has not yet emerged for DoD space applications. A relatively new systems

engineering modeling language now exists—the systems modeling language (SysML).

SysML has grown out of two different but related disciplines—MBSE and Software

Engineering. SysML has been adopted by many organizations because it is a highly

adaptable and executable modeling language, particularly concerning systems with highly

complex software sub-systems. While communicating and relating system architectures

across systems, organizations, and disciplines is one of the most significant challenges

facing the development of a true enterprise architecture, the fact that SysML has shown

itself to be flexible, adaptable, and used by many organizations makes it a strong

candidate as the common standard language for developing MBSE architectures. As

SysML shows high potential and promise of becoming a new standard method for

conducting model based systems engineering, it is logical that it could have great

potential as a common, standard, language tool for developing true mission area

architectures for DoD space related mission areas, such as the OPIR mission area.

The purpose of this research is to assess model based systems engineering

techniques in conjunction with methods and applications such as the enterprising system

 4

modeling language and recommend specific applications to aid in the development of

space based mission area architectures for the Department of Defense.

B. RESEARCH QUESTIONS

1. Primary research question: What methods, techniques, and processes can
be employed to aid in the development of mission area architectures for
Department of Defense (DoD) space systems?

2. Subsidiary research questions:

a. In what ways or in what instances can model based systems
engineering (MBSE) be used in the development of space based
mission area architectures for the DoD?

b. How can the system modeling language (SysML), based on the
common Software Engineering Unified Modeling Language
(UML), be applied to aid in developing mission area architectures
for DoD space systems?

C. BENEFITS OF STUDY

The study being conducted during this thesis will benefit the DoD by prescribing

a standardized process and framework from which model based systems engineering can

be executed and enterprise architectures developed for any given mission area. Through

demonstration of this technique for the Overhead Persistent Infrared (OPIR) mission area

architecture, the real-world applicability and feasibility of these concepts will be

explored. Organizations that could benefit from the study include the U.S. Government

(USG) and any organization contracting with the USG, particularly the DoD, each

military service, and the larger space acquisition community.

 5

II. DOD ACQUISITION AND SYSTEMS ENGINEERING
PROCESSES

The DoD outlines the overarching acquisition policy, procedures, and guidance to

be adhered to by all military services, including the U.S. Air Force, in DoD Instruction

5000.02 Operation of the Defense Acquisition System (Defense Acquisition University

2013h). The System Acquisition Framework prescribed by this DoD instruction is shown

in Figure 1.

Figure 1. Department of Defense System Acquisition Framework (From Department of

Defense 2008)

As shown in Figure 1, the System Acquisition Framework outlines specific phases

of a major DoD acquisition program into the categories of pre-systems acquisition,

systems acquisition, and sustainment. Milestones (as indicated by letters in triangles in

Figure 1) separate the phases of the acquisition process, each requiring specific entrance

and exit criteria for passage into the next phase. DoD Instruction 5000.02 details a

wealth of specific documentation that must accompany each of the milestones, reviews,

and phases outlined in the system acquisition framework shown in Figure 1. Examples of

such documentation include, but are not limited to, the initial capabilities document

(ICD), capabilities development document (CDD), capabilities production document

(CPD), systems engineering plan (SEP), test and evaluation master plan (TEMP),

 6

concept of operations (CONOPS), system design specification (SDS), and an analysis of

alternatives (AoA). (Defense Acquisition University 2013a) This overarching

acquisition process for the DoD, as it exists today, is a very document-focused and

document-driven process in which phased documentation artifacts, including those

summarized above, are generated at a specific instance in time and, in general, are used

as static tools to manage the acquisition of a system.

DoD Instruction 5000.02 further defines the core disciplines necessary to

implement the System Acquisition Framework (Department of Defense [DoD] 2008).

Once such discipline is systems engineering, which is defined within DoD Instruction

5000.02 as “the integrating technical processes to define and balance system

performance, cost, schedule, and risk within a family-of-systems and systems-of-systems

context” (Defense Acquisition University 2013g, Enclosure 12). It further defines

systems engineering in reference to the System Acquisition Framework by prescribing

that “Systems engineering shall be embedded in program planning and be designed to

support the entire acquisition life cycle” (Defense Acquisition University 2013g,

Enclosure 12). While DoD Instruction 5000.02 provides one definition of systems

engineering, many other definitions of systems engineering exist. The International

Council on Systems Engineering (INCOSE) defines systems engineering as:

an interdisciplinary approach and means to enable the realization of
successful systems. It focuses on defining customer needs and required
functionality early in the development cycle, documenting
requirements, then proceeding with design synthesis and system
validation while considering the complete problem. (INCOSE 2004)

In order to conduct the discipline of systems engineering, structured systems

engineering processes must be adhered to.

One such systems engineering process has been established by the Defense

Acquisition Guidebook, which corresponds to DoD Instruction 5000.02. The structure of

this systems engineering process is maintained within the Defense Acquisition

Guidebook, which defines the systems engineering process as “a collection of technical

management processes and technical processes applied through the acquisition lifecycle”

(Defense Acquisition University 2013e). DoD Instruction 5000.02 then goes on to

 7

outline the distinct technical management processes and technical processes summarized

in Table 1 (Defense Acquisition University 2013i).

Technical Management Processes Technical Processes
Technical Planning Stakeholder Requirements Definition
Decision Analysis Requirements Analysis

Technical Assessment Architecture Design
Requirements Management Implementation

Risk Management Integration
Configuration Management Verification
Technical Data Management Validation

Interface Management Transition

Table 1. Department of Defense—Systems Engineering Processes (From Defense
Acquisition University 2013i, Chapter 4)

The SE processes listed in Table 1 are conducted by the program manager and the

systems engineer in an iterative, recursive, and parallel fashion throughout the acquisition

life cycle. The relative degree of emphasis the program manager and systems engineer

should expect to apply to each of the management and technical systems engineering

processes listed in Table 1 during each phase of the System Acquisition Framework

shown in Figure 1 is represented in Figure 2 (Defense Acquisition University 2013e).

 8

Figure 2. Notional Emphasis of Systems Engineering Processes Throughout the

Defense Acquisition System Life Cycle (From Defense Acquisition
University 2013e, Chapter 4)

These systems engineering technical management processes are implemented

across each phase of the system acquisition framework following the “V” model

structure, as shown in Figures 3 and 4.

 9

Figure 3. Department of Defense—Systems Engineering Technical Management

Processes (From Defense Acquisition University 2013f)

Figure 4. Department of Defense—Defense Acquisition Management System Technical

“V” Activities (From Defense Acquisition University 2013f, Defense
Acquisition Management System)

Each instantiation of this “V” model includes specific inputs, outputs,

documentation requirements and activities for each technical management and technical

process. An example of the systems engineering “V” model applied to the material

solution analysis phase is shown in Figure 5. The required input and output

documentation resulting from the technical systems engineering processes executed

 10

during the material solution analysis phase of the system acquisition framework are

highlighted by blue boxes.

Figure 5. “V” Model Highlighting Phasing and Relationships Between Systems

Engineering Activities Conducted Throughout the Materiel Solution Analysis
Phase of the Defense Acquisition Framework (From Defense Acquisition

University 2013j)

Of particular note from this systems engineering process prescribed by DoD Instruction

5000.02 are the requirements for documentation release at specific points in the

acquisition process. Many of these documents, such as the initial capabilities document

(ICD), systems engineering plan (SEP), and the capabilities development document

(CDD) are further restricted by templates or format requirements. While the tasks,

activities, and concepts of the systems engineering process described by DoD Instruction

5000.02 are flexible guidelines to meet the objectives of systems engineering, the

artifacts of the process in the form of static documentation are restricted by time of

release, format, and content, all of which severely limit the overall flexibility of the

 11

process itself. Model based systems engineering, at its core, aims to shift from a

document-focused systems engineering process to a repeatable and executable process

that allows implementation of the tasks, activities, and concepts of the systems

engineering process introduced above and defined within DoD Instruction 5000.02 while

improving implementation and design flexibility through the application of dynamic

products and models tailored specifically to the unique systems engineering application.

 12

THIS PAGE INTENTIONALLY LEFT BLANK

 13

III. MODEL BASED SYSTEMS ENGINEERING AND THE
SYSTEMS MODELING LANGUAGE FOR SYSTEMS

ENGINEERING AND ARCHITECTURE DEVELOPMENT

Breaking from the document-based systems engineering approach, model based

systems engineering (MBSE) provides the systems engineer, architect, and designer with

rigorous capabilities for conducting requirements analysis, system and sub-system design

and analysis, modeling and simulation, and system verification and validation

information. As is stated in A Primer for Model Based Systems Engineering, “in

traditional systems engineering approaches, requirements reviews most often occur

without adequate allocation to the physical or logical representations. Because the

model-based approach addresses the allocation systematically, it leads to a better-

grounded method for validating the system design” (Long and Scott 2011d, 98).

Table 2 summarizes some of the different level of features available from model-

driven versus document-centered system design processes, from which we can see further

benefits of a model-driven process such as MBSE over rigid document-based process

such as those over-prescribed by the DoD System Acquisition Framework and DoD

Instruction 5000.02.

 14

Table 2. Comparison of Model Driven and Document Driven Approaches to System
Design (From Baker, Clemente, Cohen, Permenter, Purves, and Salmon 2013)

The document-centered approach to designing and developing large complex

systems brings about significant challenges in configuration management, flexibility,

documentation synchronization, and enterprise collaboration. For such reasons, in

INCOSE Systems Engineering Vision 2020, it is predicted that all systems engineering

will evolve, as other engineering disciplines including mechanical, electrical, and

software already have, from a document-centered to a model-driven process:

In particular, Model Based Systems Engineering (MBSE) is expected
to replace the document-centric approach that has been practiced by
systems engineering in the past and to influence the future practice of
systems engineering by being fully integrated into the definition of
systems engineering processes. (INCOSE 2007)

 15

A. SYSTEM MODELS

According to Long as Scott, “Models are common to human experience as aids

for understanding the way the world works.” (Long and Scott 2011e) In a general sense,

we all use models in our daily lives to represent oftentimes more complex systems or

concepts. Specific to systems engineering:

models connect the idea behind a design solution with its
implementation as a real system. These models attempt to represent
the entities of the engineering problem (opportunities) and their
relationships to each other and connect them to the proposed solution
or existing mechanism that addresses the problem. The model used in
this way is the centerpiece of MBSE. (Long and Scott 2011e)

The concept of a model can be further defined by decomposition into fundamental

elements (language, structure, argumentation, and presentation) and characteristics

(order, power to demonstrate and persuade, integrity and consistency, and insight). Each

of these four model elements and four model characteristics, as defined by David Long

and Zane Scott in A Primer for Model-Based Systems Engineering is further defined

below: (Long and Scott 2011c, 32–33)

Four Elements of a Model:
Language—The basis for the modeling approach itself. The system
definition language must be clear and unambiguous in order to depict
the model accurately and understandably.

Structure—Allows the model to capture system behavior by clearly
describing the relationships of the system’s entities to each other.

Argumentation—The purpose of the model is to represent the system
in such a way that the design team can demonstrate that the system
accomplishes the purposes for which it is designed. Therefore the
model must be capable of making the critical “argument” that the
system fulfills the stakeholders’ requirements.

Presentation—Not only must the system be capable of making that
argument, but it must include some mechanism of showing or
“presenting” the argument in a way that can be seen and understood.
(Long and Scott, 2011c)

Long and Scott also elaborate on the four characteristics of a system
model:

 16

Four Characteristics of a System Model:
Order—Allows the design team to attach the problem in a coherent
and consistent manner leading to a viable solution. The model
provides the order that becomes the framework for this effort.

Power to Demonstrate and Persuade—By representing the relevant
behaviors in proper relationship to the system entities, the model
allows the designer to see and demonstrate the necessary system
behavior. This becomes persuasive in making the case that a given
solution answers the needs that drive the design of the system.

Integrity and Consistency—Ambiguity and inconsistency in the
system design lead to design flaws which, in turn, harm the credibility
of the argument that the system design meets the needs it was designed
to meet. The model must, therefore, provide the integrity and
consistency that lead to a sound solution.

Insight—The model provides insight into the system problem facing
the design team as well as the potential design solutions. By the
model’s representation of the system behaviors and relationships, the
design team is able to gain insight into the comparative advantages of
different approaches to solving the design problem at hand. (Long and
Scott 2011b, 32–33)

As Long and Scott highlight through their definitions of model elements and

characteristics, models are customizable and adaptable tools which can be used by a

systems engineer to design and gain unique insight into a system. There are many

different modeling techniques and languages in use today that were developed to fit these

definitions. For instance, examples of modeling languages for systems engineering

applications include the system definition language (SDL), which is used for the

structured analysis approach (realized by a modeling tool such as Vitech CORE) and the

systems modeling language (SysML), which is elaborated on later as a focus of this

report.

B. MODEL BASED SYSTEMS ENGINEERING

Model based systems engineering describes a set of interrelated models and views

used to characterize and analyze a system design throughout its lifecycle. In Systems

Engineering Vision 2020, the International Council on Systems Engineering (INCOSE)

defines model based systems engineering as the “formalized application of modeling to

 17

support system requirements, design, analysis, verification and validation, beginning in

the conceptual design phase and continuing throughout development and later life cycle

phases” (INCOSE 2007, 15).

The principles of model based systems engineering provide the framework for

organizations to select a set of interrelated models to help characterize and analyze a

system and document the design, acquisition and sustainment process. Using MBSE,

organizations can select a set of models and views catered to meet their specific needs

and, through this application, realize significant improvements to their processes and

ultimately the products they produce. The selection and use of common models

throughout and across organizations will help to improve communications between

stakeholders, managers, and developers by providing a common ground for discussion.

By standardizing these models, managers and developers can not only communicate more

effectively within their program but also between multiple programs across their

organization. This open communication between programs can help to facilitate the open

exchange of ideas and lessons learned from one program to another, combating the

“stove-piped” structure often seen between programs within a large organization or

product center.

In their book, A Practical Guide to SysML—The Systems Modeling Language

(2012a), Friedenthal, Moore, and Steiner advocate the benefits of MBSE by highlighting

that it:

…provides an opportunity to address many of the limitations of the
document-based approach by providing a more rigorous means for
capturing and integrating system requirements, design, analysis, and
verification information, and facilitating the maintenance, assessment,
and communication of this information across the system’s life cycle.
(20)

Friedenthal, Moore, and Steiner (2012a) further list the potential benefits of

MBSE, which include:

Enhanced communications
• Shared understanding of the system across the development team

and other stakeholders
• Ability to integrate views of the system from multiple perspectives

 18

Reduced development risk
• Ongoing requirements validation and design verification
• More accurate cost estimates to develop the system

Improved quality
• More complete, unambiguous, and verifiable requirements
• More rigorous traceability between requirements, design, analysis,

and testing
• Enhanced design integrity

Increased productivity
• Faster impact analysis of requirements and design changes
• More effective exploration of trade-space
• Reuse of existing models to support design evolution
• Reduced errors and time during integration and testing
• Automated document generation

Leveraging the models across life cycle
• Support operator training on the use of the system
• Support diagnostics and maintenance of the system

Enhanced knowledge transfer
• Capture of existing and legacy designs
• Efficient access and modification of the information. (Friedenthal,

Moore and Steiner 2012a, 20)

In addition to facilitating better communication and understanding throughout an

organization, MBSE also improves the quality of the information presented by these

models and facilitates reuse of that information. Model based systems engineering

describes the use of a common database to integrate and relate the information presented

by multiple models and views. There are significant benefits to employing a common

integrated database to a modeling approach. At the 22nd Annual INCOSE International

Symposium, representatives of the Boeing Company summarized these “benefits of

MBSE in an integrated environment” (Gau Pagnanelli, Sheeley and Carson 2012), listed

below:

• Single data environment ensures completeness & consistency of
design data

• Rich database permits multi-user input and immediate
synchronization, improving efficiency and productivity

• Use of a single data environment results in data availability
throughout program life-cycles

• Traceability through model elements enables efficient
change/impact analysis enabling a more adaptable system

 19

• Robust query engine allows rapid assessment of the integrated
database, finding anomalies early, preventing rework. (Gau
Pagnanelli, Sheeley and Carson 2012)

By using an integrated database environment to capture the model data, valuable

real-time relationships between the information, models, and the decisions they support

can be realized, significantly improving the value of each model and the maintenance of

the supporting data. For instance, requirements can be presented in a hierarchy showing

the parent-child relationships among and between them, and source and issue linkages

can be maintained as the requirements evolve. Using the common database concept, this

requirements model can then be integrated with other models, such as the design

architecture for a system and the risk analysis tracking tools for the associated program.

The allocation of these requirements to specific architecture components and/or functions

can then be shown along with the traceability of these requirements to the mission level

requirements (Baker and Christian 2013). More and more complex relationships can be

defined between the many models used to characterize a system and relate design issues

to management initiatives associated with risk, configuration control and interface

management. The common database helps with the maintenance of these interrelated

models and views by allowing managers and engineers to make a single change to the

database and observe the change uniformly across all applicable models and views.

C. SYSTEM ARCHITECTURE DESIGN AND DEVELOPMENT

A critical part of the systems engineering process, system architecture design is

the primary tool used by systems engineers and system architects for much of the up-

front system design and definition work throughout the pre-systems acquisition phase of

the system acquisition framework. As is the case with the systems engineering

discipline, there are many diverse definitions of system architecture. In the INCOSE

Systems Engineering Handbook v. 3.2.2, system architecture is defined as “the

arrangement of elements and subsystems and their functional allocation to meet system

requirements” (INCOSE 2011, 96). The INCOSE Systems Engineering Handbook (SEH)

further expands this definition by stating that “system… architectures depict the

summation of a system’s entities and capabilities at levels of abstraction that support all

 20

stages of deployment, operations, and support” (INCOSE 2011, 98). The DoD

Architecture Framework (DoDAF) defines system architecture as “the structure of

components, their relationships, and the principles and guidelines governing their design

and evolution over time” (DoD 2009, 249). In other words, system architecture is all-

encompassing of a system’s design and description and is an evolutionary process—two

tenets that correlate strongly to the principles of MBSE which outlines evolving products

used to design and capture the entirety of a system design.

As previously discussed, system architecture design and development is an

iterative and recursive process. DoD Instruction 5000.02 identifies the key activities of

the architecture design process as:

• Analysis and synthesis of the physical architecture and the appropriate
allocation

• Analysis of the constraint requirements

• Identify and define physical interfaces and system elements

• Identify and define critical attributes of the physical system elements,
including design budgets (e.g., weight, reliability) and open system
principles. (Defense Acquisition Guidebook 2013b, 4.3.12)

D. WHY FOCUS ON SYSTEM ARCHITECTURE AND TRADE STUDIES?

Joseph Elm and Dennis Goldenson of Carnegie Mellon conducted a study

assessing the business case for systems engineering. (Elm and Goldenson 2012) Figures

6–8 summarize the results of their study in representing the correlation between the

quality of the systems engineering processes and techniques that were applied during

development and their impact to the overall project performance. The study defines the

term systems engineering capability (SEC) to measure the rigor of SE activities applied

to a project. In addition to assessing the total SE activities (SEC-Total) applied to a

project, the study decomposed SEC-Total into 11 measures of SE capability, including

product architecture (SEC-ARCH) and trade studies (SEC-TRD) (Elm and Goldenson

2012, 12)

In their study, Elm and Goldenson apply the mathematical principle of Goodman

and Kruskal’s Gamma, a measure of the relative correlation or strength between two

 21

variables. Gamma values can range from “-1” which indicates a very strong opposing

relationship to “+1” which indicates a very strong supporting relationship. A Gamma

value of zero indicates that there is no relationship between the two variables in question.

As can be seen in Figure 6, Elm and Goldenson assessed a Gamma value of +0.41 for

Product Architecture, indicating that there is a significant positive correlation between

Product Architecture efforts and the overall performance of a project. Furthermore, the

figure shows there to be nearly as strong a correlation between the quality of trade studies

conducted and the project performance, a supporting fact that will later provide additional

justification to SySML techniques for MBSE and system architecture design and

development.

Figure 6. Strength of Correlation Between Various Systems Engineering

Capabilities/Drivers and Overall Project Performance (From Elm and
Goldenson 2012, Executive Summary)

Elm and Goldenson’s study results further elaborate on this correlation between

systems engineering activities such as architecture and trade studies and overall project

performance by showing how project performance increases as the systems engineering

activity level of effort increases from “lower” to “middle” to “higher.” Figure 7

 22

highlights this strong supporting relationship between architecture development and the

project performance. As can be observed in Figure 7, the percentage of projects

delivering higher overall performance (y-axis) increases from 16 percent to 31 percent to

49 percent as the level of product architecture efforts, or SEC-ARCH (x-axis), increases

from low to middle to high, respectively.

Figure 7. Mosaic Chart Comparing Various Level of SEC-ARCH to Overall Project

Performance (From Elm and Goldenson 2012, 35)

Figure 8 shows a similarly strong supporting relationship between trade studies

and project performance, identifying an increase in overall project performance from 13

percent to 33 percent to 52 percent as the SEC-TRD increases from low to middle to

high.

 23

Figure 8. Mosaic Chart Comparing Various Level of SEC-TRD to Overall Project

Performance (From Elm and Goldenson 2012, 38)

E. MODELING AND SIMULATION

Model based systems engineering is a powerful tool for system engineers,

designers and architects because it provides strong structural support to simulation. Like

models, simulations are systems engineering tools used by multiple functional disciplines

throughout all lifecycles of a system. DoD Instruction 5000.02 defines modeling as “an

essential [tool] to aid the understanding of complex systems and system

interdependencies, and to communicate among team members and stakeholders.” It

relates simulation to modeling by stating, “simulation provides a means to explore

concepts, system characteristics, and alternatives; open up the trade space; facilitate

informed decisions and assess overall system performance” (Defense Acquisition

University 2013c, 4.3.19.1). Elaboration on this definition is provided in DoD

Instruction 5000.02 in the summary of the benefits of modeling and simulation listed

below:

Provides insight into program cost, schedule, performance, and
supportability risk

Promotes understanding of capabilities and the requirements set

Provides data to inform program and technical decisions

Promotes efficient communication and shared understanding among
stakeholders about relationships between system requirements and the

 24

system being developed, through precise engineering artifacts and
traceability of designs to requirements

Enables better analysis and understanding of system designs (including
system elements and enabling system elements), therefore providing a
greater understanding of the reasons for defects and failures at all
levels

Promotes greater efficiencies in design and manufacturing by reducing
the time and cost of iterative build/test/fix cycles

Provides timely understanding of program impacts of proposed
changes. (Defense Acquisition University 2013c, 4.3.19.1)

The activities and benefits of modeling and simulation to each phase of the

System Acquisition Framework are summarized in Figures 9 and 10.

Figure 9. Benefits of Using Modeling and Simulation Throughout the Acquisition Life

Cycle (From Defense Acquisition University 2013c, 4.3.19.1)

 25

Figure 10. Various Applications of Modeling and Simulation Across the DoD Acquisition Framework (From Defense Acquisition

University 2013c, 4.3.19.1)

Modeling and Simulation in the DoD Acquisition Life Cycle
"Weapon System Development"

S&T

• Systemthreatlntt-gradon

mO<kllng
• et.~n~M~etrecyc:~e

• MOMI~nvtronrnentand ·-• Cost J
demonscrote tec:hnctogy

sc.heduJet • IIOdtiCONOPiencl • lnteroperabtlity end
mtt.'IIOn context

perrorman~ suppon.ablllty analysts
cra~s • llrarope~and

~tlitltiJiillkJril
• Operetlonolsutt.blllty encs

• Synem affordabiiiiY
lnteropeorobillty an~~l)'sts

<Jhcov~rlu 0 lndUatftllll • lndustrtclll marwtactur1ng _,...,..., c:apabllty and rea<IIMU
• POrtfOliO USH.Itntl'l

coverage capttMiy·NI~tl$

t n•lysls • hppoi bltllty end • t!sllmate manpowed¢0St

...-.. • Modeltystcm to - pt(formanc:e sptdtleetlons

• T&t!p&annlng

• Huma_njnttrtoc•
prOCOCyplng

• RedUce togbltel rooq,rtnt
• E:nvlronrMrc.S.Itty,

• su l"iabii'V analySts and Oc.c:upaciONII
• HI..IIMn Sy&MMS He-allh (I!IOH)

lnee-g,.ion CHSI) 0>00<1•

• DHign for prodUdblllty • Millea.ry equipment
valuadon

• Demonttr'Mie syttem • Corrotlon
pt~nclonMd

• Vtrffytuncdonolltytnd contrOl
pe-rformance to

• Reftnt LC.SP apecllk:dOntlneecK

•Man~~ • Ptoeluedon
quelllk:adon tudng

• V~rttyancs Validate-...........
conflour•n

• Economic &NiylfS

c ;;;
and ,

Suppon ~

• Monlt()r
performtnOe and
•clluttllfO<IU<t
••1>90'1

• T,_lnklg ~
• otspoul.,..nnlng

• ValtdatefiiiiUtes
•nel e1e termlnt
rootc•u5H

• 0ttennrnny1tem
rtNc lfWI.Ufd ""'

• ECP lmJM"
an,tysis

 26

As previously discussed, a simulation activity with particularly strong correlation

to strong project performance is the analysis of alternatives, otherwise known as trade

studies. While architecture design and development and trade study activities are both

critical to the success of a project, they also happen to be highly correlated and

interdependent activities throughout the pre-system acquisition phase of the acquisition

lifecycle. It is the combination of the benefits realized as a result of rigorous architecture

design and development and trade study activities that drive the MBSE approach, which

is particularly well suited to strongly support both of these activities. Furthermore, as it

will be shown, it is the opinion of the author of this report that the systems modeling

language (SysML) is a particularly well suited approach to MBSE, which in turn

optimizes both architecture design and development and trade study activities to realize

the maximum potential of the MBSE approach to systems engineering.

F. ANALYSIS OF ALTERNATIVES

Section 3.3 of the Defense Acquisition Guidebook defines an analysis of

alternatives (AoA) as “an analytical comparison of the operational effectiveness,

suitability, and life-cycle cost (or total ownership cost, if applicable) of alternatives that

satisfy established capability needs” (Defense Acquisition University 2013a, 3.3). In

more general systems engineering terms, the AoA activity outlined by DoD Instruction

5000.02 is a trade study.

As part of an AoA or trade study, a team of engineers and analysts must conduct a

comparison of competing system concepts and solutions which satisfy a set of

requirements, and this must be done by assessing a broad range of system measures.

These measures are analyzed across the system architecture hierarchy for each system,

compared against component level or activity level measures of effectiveness (MOEs),

and ultimately compiled into a top-level effectiveness MOE for each system. MBSE

techniques and established system architectures are critical components in support of

determining this effectiveness MOE for each system, as will be shown in the case study

within this report. As highlighted by the DoD 5001, “The modeling effort should be

 27

focused on the computation of the specific measures of effectiveness established for the

purpose of the particular study” (Defense Acquisition University 2013a, 3.3).

In addition to computing the overall effectiveness of each system concept, an

AoA or trade study, must estimate the total life cycle cost for each system. Once the

overall effectiveness or performance and estimated life cycle cost of each system is

derived, cost-effectiveness comparisons can be developed and presented as powerful

tools to decision makers to ultimately select one system concept to implement from

among all concepts considered within a trade study. An example of a cost-effectiveness

comparison is shown in Figure 11.

Figure 11. Cost-Effectiveness Comparison—Sample Scatter Plot of Effectiveness vs.

Cost (From Defense Acquisition University 2013a, Chapter 3.3)

The cost-effectiveness comparison plot in Figure 11 is an example of how the

overall system effectiveness, plotted on the y-axis, can be compared to the life cycle cost,

 28

plotted on the x-axis, for each system alternative considered within a trade study. As

shown in Figure 11, “Alt 4” and “Alt 5” are dominated by “Alt 6,” which is expected to

achieve the same level of effectiveness as the other dominated alternatives but at a lower

life cycle cost. Taking into additional consideration any technical or schedule risk and

other programmatic aspects, a decision maker could use a cost-effectiveness comparison

plot like this to inform the selection of the system alternative to continue through the

acquisition life cycle.

G. MBSE ARCHITECTURE TOOLS AND TECHNIQUES

There are many tools and techniques that support MBSE and are in use by

systems engineering and systems architects around the world. While it is beyond the

scope of this thesis to analyze and assess each of these tools and techniques, the most

commonly used MBSE affiliated processes are introduced below.

1. Department of Defense Architecture Framework (DoDAF)

A very visible framework is the Department of Defense Architecture Framework,

i.e., the DoDAF. As is stated in DoDAF v. 2.0:

The Department of Defense Architecture Framework (DoDAF),
Version 2.0 is the overarching, comprehensive framework and
conceptual model enabling the development of architectures to
facilitate the ability of Department of Defense (DoD) managers at
all levels to make key decisions more effectively through
organized information sharing across the Department, Joint
Capability Areas (JCAs), Mission, Component, and Program
boundaries. (Department of Defense, DoDAF v. 2.0 2009, 2)

DoDAF defines a way of representing an enterprise architecture that enables

stakeholders to focus on specific interests, while retaining sight of the big picture:

To assist decision-makers, DoDAF provides the means of
abstracting essential information from the underlying complexity
and presenting it in a way that maintains coherence and
consistency. One of the principal objectives is to present this
information in a way that is understandable to the many
stakeholder communities involved in developing, delivering, and
sustaining capabilities in support of the stakeholder’s mission.
(Defense Acquisition University 2013d, Chapter 7.2.5)

 29

The DoDAF describes specific viewpoints from which each stakeholder can view

the overarching model. Each of these viewpoints is designed to organize information

from the architecture model and present it using models (e.g., graphs, tables, figures.)

catered to a specific audience who can then use the model insights for system design and

for decision making purposes. The viewpoints outlined by DoDAF 2.0 are summarized

in the next section and shown in Figure 12.

Figure 12. DoD Architecture Framework v. 2.0—Viewpoint (From Department of

Defense 2009, 140)

The DoDAF defines each of these viewpoints as summarized below:

All Viewpoint: describes the overarching aspects of architecture
context that relate to all viewpoints.

Capability Viewpoint: articulates the capability requirements, the
delivery timing, and the deployed capability.

Data and Information Viewpoint: articulates the data relationships
and alignment structures in the architecture content for the capability
and operational requirements, system engineering processes, and
systems and services.

 30

Operational Viewpoint: includes the operational scenarios, activities,
and requirements that support capabilities.

Project Viewpoint: describes the relationships between operational
and capability requirements and the various projects being
implemented. The Project Viewpoint also details dependencies among
capability and operational requirements, system engineering processes,
systems design, and services design within the Defense Acquisition
System process. An example is the V-charts in Chapter 4 of the
Defense Acquisition Guide.

Services Viewpoint: the design for solutions articulating the
Performers, Activities, Services, and their Exchanges, providing for or
supporting operational and capability functions.

Standards Viewpoint: articulates the applicable operational, business,
technical, and industry policies, standards, guidance, constraints, and
forecasts that apply to capability and operational requirements, system
engineering processes, and systems and services.

Systems Viewpoint: the design for solutions articulating the systems,
their composition, interconnectivity, and context providing for or
supporting operational and capability functions. (Department of
Defense 2009, 140)

DoDAF 2.0 defines specific model viewpoints, some of which are required for

major system acquisitions, and provides examples of specific models that meet these

viewpoint requirements. Unlike previous releases, however, the latest DoDAF 2.0

focuses on describing the meta-model which underlies its structure and does not dictate a

specific model or modeling language that must be used to satisfy any particular view or

viewpoint. Because of this, any MBSE tool and technique that includes a wide range of

different modeling tools, types, and languages—including structured analysis and

SysML—are capable of being compliant with the DoDAF 2.0 requirements.

2. Structured Analysis and Design Technique

As is described in the Handbook of Systems Engineering and Management, “the

structured analysis approach has its roots in the structured analysis and design technique

(SADT) that originated in the 1950s and encompasses structured design, structured

development, the structured analysis approach of DeMarco, and structured systems

analysis” (Sage and Rouse 2011, 483–484) Structured analysis and design is a process

oriented approach that outlines four primary components which together describe the

 31

functional architecture of a system. These four components and their relative interactions

are represented in Figure 13, and include the process model, data model, and rule model,

along with an integrated system dictionary to manage the data supporting each model

category to ensure consistency. SADT also includes dynamics modeling techniques

which integrate across all three of the model categories shown.

Figure 13. Components of the Structured Analysis and Design Technique (From Sage

and Rouse 2011, 485)

The most commonly used model diagrams and techniques employed to the

process model, data model, rule model, and dynamics model are summarized in Table 3.

 32

SADT Model Associated Diagrams and Techniques

Process Model • IDEF0—Data Flow Diagrams

Data Model • IDEF1X—Entity Relationship
Diagrams

Rule Model • Decision Trees and Tables
• Structured English

• Mathematical Logic

Dynamics Model • State Transition Diagrams
• Functional Flow Block

Diagrams (FFBDs)

Table 3. Structured Analysis and Design Models, Diagrams, and Techniques (From
Long, 2010, 7)

These models (and the integrated dictionary supporting them) support the

hierarchical decomposition of a system as its architecture is further modeled and defined.

For instance, the decomposition of an IDEF0 model used to capture the functional and

physical architecture of a system is presented in Figures 14 and 15.

Figure 14. IDEF0 Semantic Diagram (From Sage and Rouse 2011, 486)

 33

Figure 15. IDEF0 Activity Diagram—First Two Levels (From Sage and Rouse 2011,

487)

Modeling tools, such as CORE by the Vitech Corporation, provide a

comprehensive integrated toolset to support MBSE techniques and the development of

the models outlined by the structured analysis and design technique. Vitech’s CORE tool

defines a specific modeling language, called the system definition language (SDL), which

“expresses and represents the model clearly, so that understanding and insight can arise”

(Long and Scott 2011c, 32). A mapping of some of the components of SDL to MBSE

examples is shown in Table 4.

 34

Table 4. Components of the SDL Mapped to MBSE Examples (From Long and Zane

2011a, 37)

The CORE modeling tool employs an internal SDL model taxonomy, shown in

Figure 16, in order to realize the benefits of an integrated system dictionary capable of

generating a wide variety of process, data, rule, or dynamics models and views, and each

of these leverage the same common model database. As previously discussed, MBSE

tools and techniques such as that represented by the Vitech CORE toolset can be

compliant with DoDAF 2.0. In reference to the model taxonomy, shown in Figure 16, A

Primer for Model Based Systems Engineering states:

In the case of DoDAF, the Architecture class acts as a key element. It
brings the physical natures of the operational and system sides
together. Thus, in a physical sense, it is clear that a particular
Architecture entity provides the context for understanding how a set of
operational entities and a corresponding set of system entities relate.
(Long and Zane 2011a, 37–38)

 35

Figure 16. Relationship of the Parts of Speech From Common Language to the MBSE SDL (From Long and Zane 2011a, 38)

 36

3. Systems Modeling Language (SySML)

SysML, like its parent language, the Unified Modeling Language (UML) for

software engineering, was developed with comprehensive support to modeling and

simulation to include powerful and rigorous frameworks to optimize analysis of

alternatives (AoAs) and trade studies. As is stated in OMG Systems Modeling Language

V. 1.3:

SysML is designed to provide simple but powerful constructs for
modeling a wide range of systems engineering problems. It is
particularly effective in specifying requirements, structure, behavior,
allocations, and constraints on system properties to support
engineering analysis. (Object Management Group 2012, 25)

Like the Structured Analysis and Design Technique, SysML also complies with

DoDAF requirements and is capable of generating models across all DoDAF viewpoints

to realize all benefits of the enterprise architecture framework.

Compared to the document-centric approach, which is
predominately used in conceptual modeling today, SysML models
offer a much more useful format in terms of reusable blocks of
information. Compartmentalizing information allows it to be
offered to readers in more digestible quantities; different amounts
and different sections of information can be offered to readers
depending on the role they play in the study. Once built in
appropriate software, a SysML model also allows for more
intuitive navigation through the information, again aiding the
communication process. (Liston, Kabak, Dungan, Byrne, Young,
and Heavey 2010, 304)

a. History of SysML

As is described in Liston et al. 2010, in January 2001, the International

Council on Systems Engineering (INCOSE) Model Systems Design Workgroup made the

decision to adopt and expand for systems engineering applications the Unified Modeling

Language (UML), a popular tool used in the Software Engineering discipline. INCOSE

began collaborating with the Object Management Group (OMG), which maintains the

UML specification, and together they developed the set of requirements for SysML. In

March 2003, these requirements were issued by OMG as part of the UML for systems

engineering request for proposal (RFP). In response to the OMG RFP, a work group

 37

including members from industry and tool vendors was formed in May 2003. The

SysML Partners, as this group was known, initiated an open source specification project

to develop the SysML standard according to the outlined requirements. In September

2007, the SysML Partners, in conjunction with the OMG, published SysML Version 1.0—

the first official SysML standard. Following the release of the official SysML standard,

another group called the SysML Revision Task Force was established to monitor the

specification and recommend revisions as necessary. In December 2008, the OMG

SysML v1.1 standard was published, incorporating the first set of revisions to the standard

based on inputs from across the systems engineering community. The current version,

OMG SysML v1.3, was published by OMG in June 2012 and is the basis for all SysML

discussions within this report (Liston et al. 2010, 282–283).

b. Overview of SysML

SysML reuses some components and provides extensions to UML. The

Venn diagram in Figure 17 shows a representation of the interrelationship between UML

and SysML (Object Management Group 2012, 7).

Figure 17. Overview of the SysML and UML Interrelationship (From Object

Management Group, 7)

 38

According to the OMG SysML specification Version 1.3, SysML was

designed based on six fundamental principles, summarized below.

Requirements-driven: SysML was designed to satisfy the
requirements of the UML for Systems Engineering RFP

UML reuse: SysML reuses UML wherever practical to satisfy the
requirements of the RFP, and when modifications are required, they
are done in a manner that strives to minimize changes to the
underlying language. Consequently, SysML is intended to be relatively
easy to implement for vendors who support UML 2

UML extensions: SysML extends UML as needed to satisfy the
requirements of the RFP. The primary extension mechanism is the
UML 2 profile mechanism

Partitioning: The package is the basic unit of partitioning in the
SysML specification. The packages partition the model elements into
logical groupings that minimize circular dependencies among them

Layering: SysML packages are specified as an extension layer to the
UML metamodel

Interoperability: SysML inherits the XMI interchange capability
from UML. SysML is also intended to be supported by the ISO 10303-
233 data interchange standard, otherwise known as Application
Protocol 233 or AP233, to support interoperability among other
engineering tools. The specific AP233 interoperability will be
discussed later in this report in reference to realizing the proposed
systems engineering solution at SMC and across the DoD Space
Acquisition community. (Object Management Group 2012, 8)

The SysML diagram taxonomy is shown in Figure 18. The two new

diagram types that have been added to SysML include the requirement diagram and the

parametric diagram, as shown. Each of the diagram types is then summarized (Object

Management Group 2012, 167–172).

 39

Figure 18. SysML Diagram Taxonomy (From Object Management Group 2012, 167)

The system structure is represented by block definition diagrams and

internal block diagrams, which are based on the UML class diagram and UML composite

structure diagram, respectively. Liston et al. (2010) summarize each of the SysML

diagram types as defined below:

The block definition diagram describes the system hierarchy and
system/component classifications through the representation of
structural elements called blocks. Any block that exhibits behavior
must have an associated state machine diagram

The internal block diagram describes the internal structure of a
system in terms of its parts, ports, and connectors

The parametric diagram is a restricted form of the internal block
diagram and represents constraints on property values. This
diagram is used to integrate behavior and structure models with
engineering analysis models such as performance, reliability, and
mass property models

The package diagram represents the organization of a model in
terms of packages that contain model elements

The behavior diagrams include the use-case diagram, activity
diagram, sequence diagram, and state machine diagram.

The activity diagram represents the flow of data and control
between activities and shows how actions transform inputs into
outputs

 40

The sequence diagram represents the interaction between
collaborating parts of a system in terms of a sequence of
exchanged messages

The state machine diagram describes the state transitions and
actions that a system or its parts performs when triggered by events

The use-case diagram provides a high-level description of the
system functionality in terms of how a system is used by external
entities (i.e., actors)

The requirements diagram is neither structural nor behavioral. It
supports requirements traceability by representing text-based
requirements. It also provides a modeling construct for modeling
the relationship between requirements and other model elements
that satisfy or verify them. (Liston, et al. 2010, 283–285)

c. SysML Purpose and Key Features

SysML is a general-purpose graphical modeling language that provides

rigorous MBSE capabilities in support of the complete system acquisition lifecycle—

including analysis, specification, design, verification, and validation. It can be applied to

any system, simple or complex, including but not limited to software, hardware, data

processing, personnel, organizations, and procedures.

The language is intended to help specify and architect systems and
specify their components that can then be designed using other
domain-specific languages such as UML for software design and
VHDL and three-dimensional geometric modeling for hardware
design. SysML is intended to facilitate the application of an MBSE
approach to create a cohesive and consistent model of the system.
(Friedenthal, Moore and Steiner, Chapter 3: Setting Started with
SysML 2012b, 29)

Employing the diagrams summarized above, SysML can represent many

different system aspects, including:

• Structural composition, interconnection, and classification

• Function-based, message-based, and state-based behavior

• Constraints on the physical and performance properties

• Allocations between behavior, structure, and constraints

• Requirements and their relationship to other requirements, design
elements, and test cases. (Friedenthal, Moore and Steiner 2012b, 29)

 41

Detailed examples of each of these diagrams, along with a discussion of

their representation of the above system aspects, are provided in the SysML use case in

the following chapter.

d. SysML Support to Modeling and Simulation

Through the use of parametric models, SysML supports a wide range of

modeling and simulation and engineering analyses activities, including: trade studies,

sensitivity analysis, design optimization, and analysis of performance, reliability, and

physical properties of a system (Friedenthal, Moore and Steiner 2012c, 185). These

parametric models are used in SysML to capture constraints on the properties of a

system, which can then be computed and evaluated by an analysis tool.

Constraints are expressed as equations whose parameters are
bound to the properties of a system. Each parametric model can
capture a particular engineering analysis of a design. Multiple
engineering analyses can then be captured in parametric models
that are related to a system design alternative, and then executed to
support trade-off analysis. (Friedenthal, Moore and Steiner 2012c,
185)

As will be seen in the SysML case study in the following chapter, a

special model block called the constraint block, as shown in Figure 19, is used to define

equations and support the construction of parametric models.

Figure 19. Two Reusable Constraint Blocks Expressed on a SysML Block Definition

Diagram (From Friedenthal, Moore and Steiner 2012c, 189)

 42

Figure 19 shows two constraint blocks, Real Sum and Rate Monotonic

Model. Real Sum is a simple reusable constraint where one parameter, sum, equals the

sum of a set of operands, as expressed in the constraint in the constraints compartment.

(Friedenthal, Moore and Steiner 2012c, 189–190)

Constraint blocks are used in SysML to support analysis of alternatives

and trade studies. Each alternative solution is defined by a set of measures of

effectiveness (MOEs) that corresponding to specific evaluation criteria of the

requirements levied on the system. Equations for these evaluation criteria are applied to

the model and used to calculate a value for each MOE. The defined hierarchy of the

SysML model is used to allocate these specific evaluation criteria values to applicable

elements throughout the model. Using this model construct, the MOEs for each

alternative solution can be evaluated and compared against an objective function. Results

for each alternative are then compared in an analysis of alternatives to help inform

decision makers. As an example, Figures 20–22 show a simple trade study evaluating

two variants of a camera designed to operate in low-light conditions (Friedenthal, Moore

and Steiner 2012c, 200–202).

Figure 20. Two Variants of a Camera for Handling Low-Light Conditions are Defined

Using a SysML Block Definition Diagram (From Friedenthal, Moore and
Steiner 2012c, 201)

 43

Figure 21. A SysML Block Definition Diagram Represents an Analysis Context, Laying

out a Trade Study for the Two Camera Variants (From Friedenthal, Moore
and Steiner 2012c, 201)

Figure 22. Trade-off Results Between the Two Low-Light Camera Variants (From

Friedenthal, Moore and Steiner 2012c, 202)

 44

In the camera example shown in Figures 20–22, the low-light camera

defined as Option 2 would be the preferred solution, given its higher score of 450 over a

score of 400 for Option 1, as shown in Figure 22. In order to further build out a more

rigorous trade-off analysis, additional constraint blocks could be added to correspond to

additional MOEs targeting other properties of the system. Another example of this

approach to trade studies is shown later in the SysML case study.

e. SysML Tools

There are many commercial and open source tools available for

developing SysML models. The most significant of these tools are summarized briefly

below:

• Artisan Studio by Atego is a UML tool that has been developed to fully
support the SysML profile (“Artisan Studio” 2013)

• Tau G2 by IBM is a standards-based, model-driven development solution
for complex systems (“Rational Tau,” IBM website 2013)

• Rational Rhapsody also by IBM is a UML/SysML-based model-driven
development for real-time or embedded systems (“Rational Rhapsody
Family,” IMB website 2013)

• MagicDraw by No Magic is described as a business process, architecture,
software and system modeling tool, having a specific plugin to support
SysML modeling (“Magic Draw,” No Magic website 2013)

• Enterprise Architect by Sparx Systems is a UML analysis and design tool
with a module for developing SysML models (“Enterprise Architect,”
Sparx Systems website, 2013)

• CORE Spectrum and GENESYS by the Vitech Corporation provides a
foundation for enhanced system modeling, system analysis, and expedited
communication. Vitech has recently added some basic views in support of
SysML diagrams (“SysML Modeling,” Vitech website 2013)

• Modelio is an open source modeling environment with an open-source
version and fully featured commercial version of an SysML plugin
(“SysML Architect,” Modelio Store website 2013)

• TOPCASED-SysML is a SysML editor that has been developed by the
open source community (“TOPCASED-SYSML,” Fusion Forge website
2013)

 45

• Papyrus for SysML is an open source UML tool based on the Eclipse
environment and includes all of the stereotypes defined in the SysML
specification (Papyrus UML website 2013)

The MagicDraw tool by No Magic was selected as the SysML model for

use in the Overhead Persistent Infrared (OPIR) use case detailed in the following chapter.

MagicDraw was selected over the other tools primarily because of its availability—free

trial versions of both MagicDraw and its SysML module were available and included

access to the full features of the tool, unlike trial versions of the other systems. In

addition to the commercial versions of MagicDraw and CORE, the open-source tools

Modelio, TOPCASED, and Papyrus were installed and experimented with by the author

of this report, but the commercial applications were much more easily adopted given their

more streamlined user interfaces and more complete guidance and support

documentation. MagicDraw was selected over CORE because it included much more

robust SysML modeling capabilities. Additionally, MagicDraw, along with the SysML

module was the tool used to develop the diagrams and example problems contained

within the OMG SysML Version 1.3 specification, allowing for maximum commonality

between the SysML guidance and the tool used to build the model for the case study.

 46

THIS PAGE INTENTIONALLY LEFT BLANK

 47

IV. CASE STUDY—OVERHEAD PERSISTENT INFRARED
(OPIR) MISSION AREA ARCHITECTURE

A. PURPOSE

The purpose of this case study is to demonstrate how SysML can be applied to

DoD Space Systems and support architecture development and trade studies in support of

decision making.

B. SCOPE

This case study is not intended to highlight every aspect of SysML, nor is it

intended to reflect a complete architecture for the Overhead Persistent Infrared (OPIR)

mission area. Rather, the intent of this example problem is to demonstrate how SysML

diagrams can be applied and to illustrate the primary features of SysML, including the

interrelationships among the different model elements and diagrams. At least one

diagram of each SysML diagram type, presented in Figure 18, is included in this case

study to best demonstrate these features of SysML. The structure of this case study

example mimics the diagram examples provided in the OMG SysML Version 1.3

specification (Object Management Group 2012, Annex C) in order to maximize the

correlation between this case study problem and the overarching SysML guidance

documentation.

Given the assumed limitations to the OPIR architecture represented by SysML in

this case study, there will be functions, elements, and objects missing from the OPIR

architecture itself in each of the diagrams presented in order to maintain relative

simplicity within each diagram to ensure that the SysML model elements and

interrelationships can be easily identified.

C. PROBLEM SUMMARY

The DoD Overhead Persistent Infrared (OPIR) mission area is broken into four

mission areas:

 48

• Missile Warning
• Provides first response reporting of launch events anywhere in

world
• Enables precise launch trajectory and impact point computation

• Missile Defense
• Cues missile defense systems
• Identifies location of launches for ground operations

• Technical Intelligence
• Detects detailed missile phenomenology to characterize threats and

tactics

• Battlespace Awareness
• Provides insight into battlefield events and assessment of

operations
• Enables more efficient resource management

Currently, there are two major DoD space systems supporting the OPIR mission

area: the Defense Support Program (DSP) and the Space Based Infrared System (SBIRS).

DSP is the legacy OPIR system, first launched in 1966. SBIRS is the current DoD

Acquisition Program of Record (POR) for the OPIR mission area, and is described as an

integrated system of systems that includes satellites in geosynchronous orbit (GEO),

sensors hosted on satellites in highly elliptical orbit (HEO), and ground-based data

processing and control (LAAFB 2013). This case study focuses on defining the

architecture (to include requirements, performance analyses, structure, and behavior) of

the SBIRS system in support of the OPIR mission area system architecture (MASA), with

a specific focus on trade study design decisions concerning the SBIRS spacecraft power

subsystem.

D. SYSML DIAGRAMS

This case study will focus on demonstrating the following SysML content and

diagrams, in the order listed:

• SysML diagrams used to establish the system context, system boundaries,
and top-level use cases

• SysML diagrams used to analyze top-level system behavior using
sequence diagrams and state machine diagrams

• SysML diagrams for capturing and deriving requirements

 49

• SysML diagrams and techniques to depict system structure using block
hierarchy and part relationships

• SysML diagrams and techniques to illustrate the relationship of system
parameters, performance constraints, analyses, and timing diagrams

• SysML diagrams and techniques depicting the interfaces and flows in a
structural context

• SysML diagrams and techniques capturing behavior modeling and
functional flow allocation

1. Internal Block Diagram—System Context

The SysML Internal Block Diagram shown in Figure 23 shows an example of a

top level system enterprise and the external systems and actors which relate and interact

with the system. Such a diagram would likely be user-generated and satisfy the DoDAF

requirement for an Operational View 1 (OV-1). The various elements of the context

diagram are represented by SysML blocks, and the type of block is identified at the top of

the block. For example, block types in the context diagram in Figure 23 include

<<system>> and <<external>> stereotypes. These “stereotypes” are defined by the

system modeler and, while they are not structured terms of the SysML language, they are

useful classifications for the modeler and user to identify the system of interest relative to

its environment. At this point in the model development, the associations between the

blocks (shown as connecting lines) represent abstract conceptual relationships between

the entities. These relationships will be defined in greater detail by subsequent SysML

diagrams.

 50

Figure 23. SysML Internal Block Diagram Establishing the Context of the OPIR System

Using a User-Defined Context Diagram

2. Use Case Diagram—Top Level

A SysML use case diagram for the SBIRS system is shown in Figure 24. The

SBIRS system is shown as the subject of the use case diagram and the actors (including

the operator, Air Force, engineering, prime contractor, and Department of Defense) are

shown interacting with component or child use cases (i.e., operate SBIRS, develop the

system, operationalize the system, and maintain the system).

 51

Figure 24. SysML Use Case Diagram Establishing the Top Level Use Cases for the

SBIRS System Which Satisfies the OPIR Mission Area

3. Use Case Diagram—Operational Level

The hierarchical breakdown of the SysML use case diagrams introduced in Figure

24 is shown in Figure 25, specifically those associated with “Operate SBIRS.” More

precisely, this is a Goal-Level SysML use case diagram. The “goals” of the “fly the

spacecraft” component of the “operate SBIRS” include initialize the spacecraft,

maneuver, control payload, and collect and process data. The association of these goals

to the use cases is shown as being “extended by” and “included within” the “fly the

spacecraft” and “process and distribute data” use cases.

 52

Figure 25. SysML Use Case Diagram Establishing the Operational Use Cases Which

Further Refine the “Fly the Spacecraft” Use Case

4. Sequence Diagram—Initialize Black Box

The SysML sequence diagram in Figure 26 shows the interactions between the

operator (actor) and the SBIRS (system) necessary for the “fly the spacecraft” use case

introduced in Figure 25. At this level of abstraction, directionality of the interactions is

not captured. Instead, this top-level sequence diagram provides insight into the

sequencing and hierarchal interdependencies of lower level sequence diagrams. The term

“black box” is used in this case to identify that the subject system, SBIRS, is interacting

with outside external elements: the internal detail is not shown at this point in the model

decomposition.

 53

Figure 26. SysML Sequence Diagram Establishing the “Black Box” Top-Level Use

Cases and Their Interdependencies

5. State Machine Diagram—Spacecraft Operational States

The SysML state machine diagram in Figure 27 identifies and describes the

interaction between the operational states of the SBIRS system introduced as part of the

black box sequence diagram shown in Figure 26. How these different operational states

are triggered by the SysML model is shown later, as are the requirements that specify

these operational states and the interactions and behaviors (e.g., drifting, activate,

 54

acceleration) which trigger the system’s transition from one state to another. The SysML

diagram in Figure 27 introduces how requirements are allocated throughout the SysML

model. As shown in Figure 27, the “Spacecraft Operational States” state machine

diagram “refines” the “Power Source Management” requirement.

Figure 27. SysML State Machine Diagram Associated with the “Fly the Spacecraft” Use

Case

6. Decomposed Sequence Diagrams

SysML sequence diagrams decomposing the top-level sequence diagram shown in

Figure 26 are presented in Figures 28 and 29. The first of these decomposed sequence

diagrams, shown in Figure 28, is the “initialize spacecraft black box,” which shows the

internal interaction, as defined by the “SendCommandToInitialize” and

“InitializeSpacecraft” swimlines between the operator and the SBIRS system.

 55

Figure 28. SysML Sequence Diagram Capturing the “Black Box” Interaction for the

“Initialize Spacecraft” Use Case

The second decomposed sequence diagram, shown in Figure 29, presents an

example of a “white box” sequence diagram detailing the interaction between the “Power

Control Unit” and the “Electrical Power Controller,” two subsystems of the “Power

Subsystem,” which is itself a sub-system to the SBIRS system of interest. This structural

parts breakdown is shown later in Figure 37.

 56

Figure 29. SysML Sequence Diagram Capturing the “White Box” Interaction for the

“Initialize Spacecraft” Use Case

7. Requirements Diagrams

Three SysML requirements diagrams are shown in Figures 30, 31, and 32—

capturing the SBIRS requirements hierarchy, derived requirements, and power system

requirement relationships, respectively. Each of these requirements would be derived

from the “OPIR Requirements Document” specification and input into the SysML model.

The SBIRS requirements hierarchy shown in Figure 30 highlights some of these

requirements. The “affordability” requirement is shown expanded to indicate the level of

detail that can be captured on a SysML diagram. The SysML “containment” relationship

(as shown by the cross hairs on one end of the relationship line) are used to show that a

complex requirement is decomposed into simpler component requirements.

 57

Figure 30. SysML Requirements Diagram Establishing the OPIR Requirements Hierarchy

 58

The SysML requirements diagram shown in Figure 31 provides an example of

what the requirements hierarchy might look like at the lowest level of the requirements

derivation and decomposition within the model. The derived requirements, as indicated

by the <<deriveReqt>> relationship, express the requirements in the OPIR Requirements

Document specification in a manner that specifically relates them to the SIBRS system.

This diagram shows the other end of the requirements allocation introduced by the state

machine diagram in Figure 27 using the <<RefineBy>> relationship. Additionally, this

SysML diagram introduces the use of the <<Rationale>> object that can be attached to

any SysML relationship. In this case, the <<Rationale>> is attached to the relationship

between the “Power System Loads” <<requirement>> and its <<derived requirement>>

the “Power Source Management” <<requirement>>.

Figure 31. SysML Requirements Diagram Establishing the Derived Requirements and

Rationale From the Lowest Tier of the Requirements Hierarchy

The third SysML requirements diagram shown in Figure 31 details the

requirement relationships associated with the “maneuver capability” requirement. This

 59

SysML diagram shows how the <<refine>> relationship can be used. In this case, it

indicates that “maneuver capability” requirement is <<refined>> by the “maneuver” use

case. This diagram also shows how a physical system component, such as the “power

subsystem” can be shown to <<satisfy>> a requirement, in this case the “power system

loads” requirement as shown in Figure 32 by the use of the <<satisfy>> relationship.

Lastly, as will be elaborated later in this SysML case study, a <<test case>> class/block is

identified and shown that it will be used to <<verify>> the “maneuver capability”

requirement.

Figure 32. SysML Requirements Diagram Capturing the Relationships for the

“Maneuver Capability” Requirement

8. Activity Diagrams

Figure 33 shows the top-level behavior of the “accelerate” function for the SBIRS

system. Specifically, this diagram attempts to allocate the system-level behaviors to the

“powersubsystem” which has the designed behavior of “providepower.” However, as the

comment in Figure 33 suggests, the systems engineer cannot achieve the appropriate

 60

level of detail by modeling the behaviors at just this top-level and must further de-

compose the system behavior to fully identify those behaviors, which influence the

“powersubsystem.”

Figure 33. SysML Activity Diagram Highlighting the Behavior for the “Accelerate”

Function

The top-level activities and object flows introduced in Figure 33 are further de-

composed, as shown in the SysML block definition diagram in Figure 34.

 61

Figure 34. SysML Block Definition Diagram Decomposing the Activities Associated

with the “Accelerate” Function

Given this de-composition of the top-level behavior associated with the

“Accelerate” function of the SBIRS system, an activity diagram decomposing and

detailing the “ProvidePower” activity is shown in Figure 35. This detailed SysML

activity diagram includes the Actions which trigger the Activities and ObjectNodes

introduced in Figure 34. The frame outlined by the vertical lines is an example of SysML

AllocateActivityPartitions. These partitions provide insight into the allocation of the

decomposed “ProvidePower” activities, including the “ProportionPower,”

“ProvideThrusterPower, “ControlElectricPower,” and “ProvideElectircPower” activities

to the physical system components/parts that must perform each of these activities,

including the “PowerControlUnit,” “PropulsionSystem,” “ElectricalPowerController,”

and “SolarPannels,” respectively. Similarly, one can see how the object flows “Throttle,”

“FilterPower,” and “ElecCurrent” interact between physical system components and the

activities performed by those components.

 62

Figure 35. SysML Activity Diagram Providing a Detailed Behavior Model for the “Provide Power” Activity/Function

 63

9. Block Definition Diagrams

The following diagrams provide examples of SysML block definition diagrams

and internal block diagrams. The first of these block definition diagrams, shown in

Figure 36, provides a refined decomposition and definition of the context diagram shown

in Figure 23. This breakdown of the OPIR domain using the block definition diagram

clearly specifies that the interactions “Initialize Black Box” and “Initialize Spacecraft

Black Box,” as shown in Figures 26 and 28, are owned by and therefore further refine the

“OPIRDomain” block. The “1..*” identifier at the child end of the association between

the “Environment” block and the ““Debris/OtherSystem” and “SystemOrbit” blocks

indicates that there can be “one to many” instances of “Debris/OtherSystem” or

“SystemOrbit” associated with the space “Environment.”

Figure 36. SysML Block Definition Diagram Defining the OPIR Domain

The block definition diagram shown in Figure 37 shows the top level

decomposition of the SBIRS system into its physical subsystems. For illustration

purposes, the “ThrusterSubsystem” and “StructureSubsystem” are further decomposed

 64

(incompletely) into the “Thrusters” and “GyroAssembly” sub-systems, respectively. The

solid-filled diamond shown at the parent end of the association between the “Thrusters”

and the “ThrusterSubsystem” and the “GyroAssembly” and the “StructureSubsystem” in

Figure 37 indicates a “composite aggregation,” or in other words, a “contained in”

relationship, of the child, i.e., the “Thrusters” and “GyroAssembly,” to the parent, i.e., the

“ThrusterSubsystem” and “StructureSubsystem.” The un-filled diamond indicates a

“shared aggregation” between two parts/blocks. Therefore, it can be observed from

Figure 37 that while the “Thrusters” and “GyroAssembly” parts are contained within the

“ThrusterSubsystem” and “StructureSubsystem” blocks, respectively, both the

“Thrusters” and the “GyroAssembly” are used by the “PowerSubsystem.” A

<<rationale>> object can be added to further describe these types of dual-associations, as

shown in Figure 37.

Figure 37. SysML Block Definition Diagram Defining the Structure of the SBIRS

System

Figure 38 further defines the model elements introduced in Figure 37 by showing

how they are connected together within the “SBIRS” block.

 65

Figure 38. SysML Internal Block Diagram Capturing the Internal Structure of the SBIRS

System

The “PowerSubsystem” introduced in Figure 37 is further decomposed into its

sub-systems in Figure 39. This figure shows additional examples of the “use-not-

composition” relationships between components, as indicated by the un-filled white

diamond shape.

Figure 39. SysML Block Definition Diagram Defining the Structure of the Power

Subsystem

 66

While Figure 39 shows the defining structure of the “PowerSubsystem”

component, it does not completely define how the components internal to the SBIRS

power subsystem are used and how they interact and communicate with each other. The

internal block diagram shown in Figure 40 does just this by defining the connectors

between parts, ports, and connectors with item flows. The “use-not-composition”

relationship of the “GyroAssembly” as defined in earlier diagrams is indicated in Figure

40 using a dashed-line border for the block. The ports are shown in Figure 40 as boxes

with direction arrows placed either on a block or on the border of the diagram, indicating

flows external to the diagram. An example of an item flow between ports is shown in

Figure 40 as the fuel flow between the “FuelPump” and the “Thrusters.” “Required and

provided” interfaces specifying each block are indicated by the ball and socket icons

extended from some of the ports shown in Figure 40.

 67

Figure 40. SysML Internal Block Diagram Defining the Internal Structure of the Power Subsystem

 68

Another example of an internal block diagram is shown in Figure 41. This

internal block diagram within the “PowerSubsystem” further refines the Controller Area

Network (CAN) bus architecture using the ports defined earlier.

Figure 41. SysML Internal Block Diagram Identifying the Connectors into the CAN Bus

The explicit structural allocation between the connectors introduced in Figure 41

is further defined in Figure 42.

 69

Figure 42. SysML Internal Block Diagram Detailing the Flow Allocation to the Power

Subsystem

The port identified in Figure 40 for the “FuelTankAssembly” and

“PropulsionSubsystem” along with the fuel flow between the two ports is further defined

in Figure 43. This diagram defines the specific properties of the “FuelFlow,” including

the “fuelReturn” and “fuelSupply” item flows first introduced in Figure 40. Figure 43

also identifies the measured and observed properties, pressure and temperature, of the

fuel itself within the “Fuel” block.

 70

Figure 43. SysML Block Definition Diagram Detailing the Definition of “Fuel Flow”

Figure 44 expands the “FuelTankAssembly” and “PropulsionSubsystem” blocks

and further defines the “fuelDelivery” and “fdist” connectors introduced in Figure 40.

The expansion of the “PropulsionSubsystem” reveals the “FuelRegulator” and “FuelRail”

parts. These sub-system component parts are related to the original components through

an allocation relationship, as indicated by the “allocatedFrom” box. Furthermore, it can

be observed in this internal block diagram that the “fuelDelivery” connector is really two

distinct connectors, “fuelSuppy” and “fuelReturn.” The “Fuel” block within the

“FuelTankAssembly” represents a quantity of fuel remaining. This fuel is drawn from

the “Fuel” block to the “FuelPump,” from which it is provided to the “PropulsionSystem”

via the “fuelSupplyLine,” as shown in Figure 44. The “fuelReturnLine” flow indicates

that an un-used fuel can be returned to the “Fuel” block for later use.

 71

Figure 44. SysML Internal Block Diagram Detailing the Internal Structure of the Fuel

Delivery Subsystem

10. Parametric Diagrams and Performance Analysis

Figure 45 introduces the SysML parametric diagram. Specifically, Figure 45

defines precisely how the fuel flowrate is related to “fuelDemand” and “fuelPressure.”

These relationships set the stage for modeling the precise engineering physics and

behaviors of the item flows between the ports, connecting components within the power

subsystem, a component with the SBIRS system. Such detailed and comprehensive

definition of the system architecture, with equations precisely defining the relationships,

can later be used to perform modeling and simulation in support of trade studies between

multiple concept system architectures.

 72

Figure 45. SysML Parametric Diagram Defining the Fuel Flow Constraints

The following diagrams further illustrate how SysML can be used to perform such

an engineering analysis. The various engineering equations (along with their relationships

to the domains and contexts previously introduced) that will be used to conduct an

analysis of the propulsion sub-system are shown in Figure 46. These equations are

modeled as <<constraint>> blocks within SysML, as shown.

Figure 46. SysML Block Definition Diagram Defining the Analysis for the SBIRS

Engineering Development

 73

Figure 47 depicts a SysML package diagram, which provides additional detail of

the user-defined Performance Viewpoint and the elements that populate the SBIRS

specific “PerformanceView.” The specifications of the Performance Viewpoint itself are

identified using the SysML <<view point>> block. Many SysML diagrams support the

“PerformanceView” representation of the Performance Viewpoint, including the

“Operator” actor, “Fly the Spacecraft” use case, and “Performance” requirement, all of

which were introduced and defined in greater detail earlier in this chapter. Figure 47 also

introduces the measures of effectiveness (MOEs) that will be used as part of the

engineering analysis of this particular propulsion sub-system architecture as part of the

SBIRS system.

The performance viewpoint shown in Figure 47 is analogous to the “operational

viewpoint” defined by the DoDAF, as previously discussed. This is one example of how

SysML is something that can be related to and is compliant with DoDAF 2.0.

 74

Figure 47. SysML Package Diagram Establishing the Performance View and Viewpoint

of the OPIR Model

The MOEs introduced in Figure 47 are further defined in the SysML parametic

diagram shown in Figure 48. This diagram describes how the overall cost effectiveness

of the particular propulsion sub-system design alternative is evaluated against each of the

defined MOEs. Figure 48 also introduces the <<objectiveFunction>> that is used to

measure and compare each design alternative as part of an analysis of alternatives or

trade study. In order to provide consistency between the analysis of various design

alternatives, the same equations, objective function, and MOEs along with the

relationships between each as shown in Figure 48 must be used for the analysis of each

alternative.

 75

Figure 48. SysML Parametric Diagram Defining the Measures of Effectiveness and

Objective Function for Engineering Analysis

One of the most significant life-limiting factors of any spacecraft is the on-board

fuel. As such, the efficiency of a spacecraft’s use of its fuel to perform activities such as

station-keeping maneuvers is a key requirement to the design of the propulsion sub-

system. In order to assess the efficient use of fuel by the propulsion sub-system specified

for this example, we can examine the constraint blocks and properties necessary to

evaluate the fuel efficiency presented in Figure 49. The equations and interactions shown

in Figure 49 establish the mathematical relationships for the fuel efficiency calculations.

 76

Figure 49. SysML Parametric Diagram Establishing the Mathematical Relationships for Analysis

 77

The “OrbitalMechanics” constraint block introduced in Figure 49 is further

decomposed in Figure 50. This diagrams shows the use of SysML Constraint Nodes,

identifying the equation associated with each constraint within the {} brackets.

<<rationale>> blocks can also be used to provide a visual of the equations used for each

constraint, as shown. As with other SysML diagrams, the internal parametric diagram

shown in Figure 50 shows the inputs and outputs of the parent “OrbitalMechanics” block

as entering from the left side of the diagram and exiting the right side of the diagram.

Figure 50. SysML Parametric Diagram Detailing the “Orbital Mechanics” Mathematical

Model

Utilizing the engineering constraints applied to components throughout the

SBIRS architecture decomposition, the SysML architecture becomes a powerful

 78

executable model that can be used by designers, systems engineers, and ultimately

decision makers to perform Modeling and Simulation and Analysis of Alternatives or

trade studies comparing the various system designs and implementations that satisfy the

architecture. An example of a report that can be generated from this executable model is

shown in Figure 51 for the “Maximum Delta-V Acceleration Analysis” conducted against

the propulsion sub-system of the SBIRS system using the architecture and associated

engineering equations/constraints outlined in this case study. As indicated by the SysML

timing diagram in Figure 51, this particular analysis satisfies the “ManueverCapability”

requirement as shown in Figure 32.

Figure 51. SysML Timing Diagram Showing Sample Results from a SysML Parametric

Analysis. This Example Summarizes Results from the Maximum
Acceleration Analysis

 79

Additional parametric models and engineering analysis can be generated based on

the unique requirements of the system being modeled. All results from lower-level

engineering analysis, such as the acceleration analysis summarized in Figure 51, can then

be rolled up through each level of the system architecture de-composition and ultimately

result in top level performance metrics for a particular system of interest. By analyzing

many different system concepts this way, measured against the same architecture de-

composition and SysML model, the assessed performance of each system concept can be

compared against the cost and other programmatic factors of interest. Then, using

analysis tools such as cost-effectiveness comparisons, as described in Chapter III: Section

D of this paper, decision makers can make truly educated decisions based on a rigorous

engineering analysis.

The SysML diagrams developed for the SBIRS system implementation to the

OPIR Mission Area Architecture illustrates how SysML, combined with the concepts of

model based systems engineering, can provide extremely powerful engineering tools in

support of systems engineering. Examples of some of the commonly asked questions that

could be answered with relative ease and great fidelity once a structured SysML model is

complete are provided below:

• What orbital regimes (inclination, altitude, etc.) and at what note
(geographical longitude of the ascending note) should the SBIRS
spacecraft be placed in to optimize coverage area? Revisit time? Dwell
time? Sensor resolution?

• How many spacecraft are required to achieve mission requirements?

• What Infrared payload detector material should be used to optimize
payload performance?

• What size payload telescope should be used to optimize payload
performance?

• How much fuel is required to sustain the spacecraft for a required
duration?

• What is the overall reliability of the SBIRS spacecraft?

• What structural, thermal, and other impacts does the power subsystem
inflict on the thermal control subsystem? The structure/spacecraft bus
subsystem?

 80

Ultimately, defining the system architecture by answering all of the questions

above, an executable SysML architecture could be used to answer the question: How well

does any particular architecture, defined by decisions made to the questions above, satisfy

the mission requirements (missile warning, missile defense, technical intelligence, and

battlespace awareness)? MBSE is a powerful part of helping to answer this question by

providing all stakeholders, from the design engineers and architects all the way up to the

highest level decision maker, with detailed products (models and views). These MBSE

products provide stakeholders with easily digestible insight into the robust engineering

analysis conducted by the SysML architecture framework and can be used to enable

highly informed and effective decision making based on detailed analysis.

E. ARCHITECTURE DEVELOPMENT—HEURISTICS

In effort to outline basic guidelines for developing a system architecture, such as

the OPIR MASA and the SBIRS system implementation of this architecture shown in this

SysML case study, the author of this report has developed ten heuristics; these heuristics

have been developed through the writing of this report as well as from interactions with

other systems, and they are provided in Appendix A.

The Merriam-Webster dictionary defines heuristics as “aids to learning,

discover[ing], or problem-solving by experimental and especially trial-and-error

methods” (Merriam-Webster Dictionary, under “heuristics” 2013). Another term for

heuristics, used often in the Department of Defense acquisition community, is to say

“lessons learned.” Heuristics are subjective by nature as general learning points gained

through human experience (Giammarco 2012). As Maier and Rechtin state in The Art of

Systems Architecting, “the format of heuristics is words expressed in the natural

languages” (Maier and Rechtin 2009, 31), the 10 heuristics provided in Appendix A are

written in the first person and refer to real-life examples and experiences of the author of

this report. As such, the writing style used in Appendix A differs drastically from that of

the body of this report, in order to communicate the more subjectively derived knowledge

often expressed in heuristics and lessons learned.

 81

V. IMPLEMENTATION OF MODEL BASED SYSTEMS
ENGINEERING AND ENTERPRISE SYSTEMS ENGINEERING

TECHNIQUES AT THE SPACE AND MISSILES SYSTEM CENTER

A. TRANSITIONING TO MBSE

According to Friedenthal, Moore, and Steiner,

Models and related diagramming techniques have been used as part of
the document-based systems engineering approach for many years,
and include functional flow diagrams, behavior diagrams, schematic
block diagrams, N2 charts, performance simulations, and reliability
models, to name a few. However, the use of models has generally been
limited in scope to support specific types of analysis or selected
aspects of system design. The individual models have not been
integrated into a coherent model of the overall system, and the
modeling activities have not been integrated into the systems
engineering process. The transition from document-based systems
engineering to MBSE is a shift in emphasis from controlling the
documentation about the system to controlling the model of the
system. MBSE integrates system requirements, design, analysis, and
verification models to address multiple aspects of the system in a
cohesive manner, rather than a disparate collection of individual
models. (Friedenthal, Moore and Steiner 2012a, 20)

As Friedenthal, Moore, and Steiner suggest, it is not trivial for an organization to

adopt a fully integrated MBSE approach. Furthermore, it can be extremely challenging

for an organization to adopt a principle such as MBSE using a common language and

approach, such as SysML. The DoD is certainly not immune to these challenges. In fact,

the DoD may be an organization where implementing such a transformative change

would be the most challenging. Therefore, a gradual implementation of the MBSE

principles and use of the SysML language to realize the full potential of MBSE is

proposed. Since attempting to adopt both MBSE and SysML at once would likely prove

extremely difficult, if not impossible, options are explored for first adopting the

principles of MBSE without a wholesale change out of existing DoD processes and

practices.

One approach to more gradually implement MBSE principles and practices across

an organization such as the DoD is to implement a data exchange specification which

 82

integrates the tools, techniques, and processes currently used by the organization. Using

a data exchange specification would allow an organization to continue operating using its

currently defined processes and simultaneously realize significant benefits from the

ability to integrate and relate these processes and products across organizational

boundaries which might have previously been stove-piped and closed off to each other.

In highlighting interoperability, the OMG SysML Version 1.3 specification introduces one

such data exchange specification—the ISO 10303 Application Protocol 233, or AP233.

(Object Management Group 2012, 8)

B. DATA EXCHANGE SPECIFICATIONS

Data exchange specifications, when applied as a uniform standard across an

organization, can bring about significant improvements across an enterprise without

forcing drastic change on the organization’s current operational rhythm. Any data

exchange specification that might emerge as the industry standard, so long as it is

mandated as a standard across the organization in question, can effectively realize these

benefits. In order to remain consistent with the current specification under development

in conjunction with SysML, this report will focus on one particular data exchange

standard for description purposes, the ISO 10303 AP233 data exchange specification.

According to the Object Management Group, AP233 is an industry standard

metadata model to enable the sharing and exchange of data across multiple tools and

across multiple acquisition programs. (SysML and AP233 Mapping Activity 2010) It

describes the theoretical or potential linkages between different systems engineering (SE)

tools and products and aims to develop a common schema for storing the language of

each of these SE tools. This common schema would then enable the export and import of

data between compatible SE applications and platforms to better integrate the models and

products generated by the applications.

While the AP233 initiative aims to develop an industry-wide metadata standard

for all systems engineering, design, and product life cycle management (PLCM) tools,

the concept of communicating data between SE platforms is not new. Efforts have been

made to link project management and systems engineering tools, such as integrating data

 83

between Microsoft Project and the CORE Systems Engineering tool developed by the

Vitech Corporation (Bruring 2009). Enterprise Architect, another well-known SE toolset,

has a “Model Driven Architecture (MDA)” initiative aimed at similar objectives to those

of AP233. MDA describes translating data from Platform Specific Models (PSMs) into a

Program Independent Model (PIM), which can then be imported to other PSMs to share

data between platforms (Object Management Group, Sparx Systems 2007).

AP233 divides the tools it prescribes for integration into two categories: Program

Management and System Requirements/Design. It also describes the capabilities often

used to bridge the gap between these two categories—risk analysis, issue resolution, and

management authorization and review—and proposes using the AP233 information

model to facilitate the exchange of information through these capabilities. Figure 52

summarizes some of these AP233 tools and highlights the relationships between the

AP233 data and the core products of SysML (SysML and AP233 Mapping Activity

2010). Note the similarity of these categories to the technical management and technical

systems engineering processes identified by DOD Instruction 5000.02 and summarized in

Table 5 and repeated (Figure 52).

Technical Management Processes Technical Processes
Technical Planning Stakeholder Requirements Definition
Decision Analysis Requirements Analysis

Technical Assessment Architecture Design
Requirements Management Implementation

Risk Management Integration
Configuration Management Verification
Technical Data Management Validation

Interface Management Transition

Table 5. Department of Defense—Systems Engineering Processes (From Defense
Acquisition University 2013i)

 84

Figure 52. SysML and AP233 Data Overlaps (From “SysML and Ap233 Mapping

Activity,” OMG SysML Portal Website 2010)

By facilitating the transfer of data and information between multiple program

management systems, engineering applications, and platforms, a data exchange

specification such as AP233 can enable large organizations and their partners to realize

the inter-model relationship benefits described by model based systems engineering

(U'Ren 2003).

C. SMC REQUIREMENTS AND CURRENT TOOLS

1. Current SMC Tools and Processes

The great complexity of space systems acquisition requires the use of various

design and management tools to adequately characterize and track the system as it

progresses through the acquisition lifecycle. The Space and Missile Systems Center

(SMC) uses many such tools to generate models and reports intended to help characterize

 85

the system and support decision making. The value of these tools, however, is limited by

the fact that they exist at varying levels in the program, from center-wide and program

specific tools within SMC to the unique tools and processes used by the prime and

subcontractors for each specific program.

Currently, SMC program offices struggle to manage various aspects of system

development in a unified way such as described by MBSE. Instead, they are left with an

inconsistent and fragmented set of systems, tools, and products that lack clear structure,

direction, and governance. Each individual or program element is left with the challenge

of identifying which combination of tools, resources, and systems must be used to

accomplish their jobs. This current approach lacks guidance as to which resources are

available and how they might impact the individual’s work, and in many cases, this

approach does not provide access to these resources as required. A need exists to provide

this guidance and access and to integrate the products so they can be distributed and

effectively utilized throughout the program office.

Many of the tools used throughout SMC are not integrated with other tools and

products, which oftentimes results in significant disconnects, re-work, and

inconsistencies between program elements. This is particularly an issue with system

design and architecture tools intended to support concept and system definition,

interoperability and interface analysis, and verification and validation activities. Each

program has many different methods and tools by which individuals (mainly the

contractors) manage these types of design models, and the SMC product center as a

whole has very little understanding of what this tool set is.

Tools used to track and manage many of the program management functions—

such as requirements, organizational structures, schedules, budgets, and project

management status—seem to be more standardized and integrated within SMC than the

system design tools. For example, the Comprehensive Cost and Requirement System

(CCaR) is used by every SMC program office to capture and track requirements and

accounting data. CCaR correlates and traces the system requirements to the project Work

Breakdown Structure (WBS) and budget obligations/expenditures. The System Metric

and Reporting Tool (SMART) is used by every SMC program office to report program

 86

status information to key stakeholders on a monthly basis. The inputs entered into

SMART and CCaR are later integrated and presented in a new application called

Executive CCaR which is used by senior DoD acquisition executives to gain insight into

their program portfolios. Although these tools are fairly well standardized throughout all

of the program offices at SMC, the input data must be manually generated for them, as it

is not made readily available from other tools.

Much of the requirements, accounting, and program status data captured by tools

like CCaR and SMART is derived from a wide variety of non-standardized and

inconsistent applications, tools, and processes. This data, in many cases, is ultimately

derived from issue tracking, risk management, and system design and architecture tools.

It is within these tools that significant inconsistencies exist between, and even within, the

many space acquisition programs at SMC. Furthermore, there are a great number of

unique tools and processes used to track issues and manage risks within each program

office, resulting in confusion between the various program elements. This confusion is

further elevated when the issues and risks being tracked are translated from the tools used

by the SMC program office to those used by the prime and subcontractors. The

architecture and design for any particular system is generally captured and managed by

the contractor’s tools and processes, which are even less standardized between the prime

and subcontractors and the various SMC program offices.

2. SMC Requirements

In order to fully understand a system’s architecture, make well-informed

decisions, and report accurate information about a space acquisition program, SMC

requires insight into how issues and risks are tracked and how requirements and

associated design issues are traced throughout all levels of the program. System models

play a key role in supporting SMC program management, such as those models

documenting the system’s design and build architectures. The program office needs to

ensure that requirements are being addressed properly from the mission capability

requirements all the way down to the lowest subcontractor level. Responsibility for these

requirements must be derived, assigned and tracked in such a way that the system can be

 87

integrated to ultimately fulfill its intended mission. When system issues are discovered

from tests or other means, SMC needs to ensure that these issues are properly assigned to

the appropriate program elements. Management requires knowledge into where and how

these issues are resolved, along with details on the impact of these issues on the overall

program. Each program office requires tools and processes that facilitate configuration

management of the many documents, models, and products generated and used

throughout the organization. To ensure that the system will ultimately meet its

requirements and fulfill its mission, SMC needs to understand the system architecture and

how the requirements and issues are traced to the components within the architecture. To

assess the quality of the system under development, SMC requires the ability to see into

both the “as designed” and “as built” architectures.

In order to adequately support each SMC program office and share insight and

lessons learned between the program offices, the SMC staff directorates require real-time

access to the many program management and systems engineering products generated by

the program offices. In addition to simply having access to the program office

information, these staff directorates must also interpret and communicate this information

to other program offices and to agencies outside of SMC. In order to better understand

and communicate this information, these staff directorates require a standardization of the

information, documentation, and models generated by each of the program offices.

The current environment makes it very difficult, and oftentimes impossible, for

SMC to have the level of visibility into the requirements, issues, risks, and architecture

products required to adequately assess and make decisions in support of the program. A

basic structure exists to report the status of a major space acquisition program (e.g.,

CCaR, SMART, Executive CCaR), but the structures and tools used to obtain and track

the information necessary to input into this reporting structure—and ultimately ensure

that the system’s mission will be achieved—is inconsistent and lacking.

 88

D. POTENTIAL VALUE OF MBSE AND DATA EXCHANGE
SPECIFICATION TO SMC

The Space Acquisition infrastructure spans a wide range of communities

throughout and external to the DoD, including but not limited to acquirers, contractors,

concept developers, sustainers, politicians, special interest groups, and of course, users.

Each of these communities and stakeholders has different priorities and expectations of a

system, and each requires unique insight into the systems’ acquisition lifecycle. Being

able to communicate system characteristics between these various stakeholders is critical

to the success of a program and is an area that the proper application of MBSE principles

can support by facilitating different viewpoints. Facilitating different viewpoints,

however, is extremely difficult if the processes of each stakeholder are not in sync and

the data behind the products are not fully integrated within a common language set. Here

is where a data exchange specification comes into play, enabling the translation and

integration of the data supporting different viewpoints based on a common model. By

endorsing an MBSE strategy with compliance to a data exchange specification such as

AP233, SMC could take the first step toward enabling greater interoperability among the

various stakeholders. As previously discussed, SysML was designed with AP233

interoperability in mind, and therefore is postulated as the next logical evolutionary step

for an organization to realize the maximum benefits of MBSE.

A data exchange specification would facilitate the export and import of data

between compatible management and engineering applications and platforms used by all

of the key SMC stakeholders, with migration towards a shared information space that can

be used to support programmatic decision making throughout the system’s life cycle.

Early in the acquisition lifecycle before a SMC program office is formally

established, on-going concurrent efforts by the user and concept development

organizations are in work to identify capability needs and mission requirements and to

study potential material solutions to meet capability gaps. As AFSPC conducts capability

based assessments (CBAs) to assess the user’s needs, they generate a series of

descriptions and products (such as the ICD) identifying current capability gaps and

mission-level requirements and measures. Simultaneously, the concept development

 89

organizations are exploring the realm of the possible in efforts to define methods and/or

material solutions to fill the capability gaps and meet the requirements. Currently, the

various stakeholders participating in these efforts generate these products and capture this

information using unique models and views—through unique and disjointed processes,

systems, and tools. Applying MBSE principles to standardize the models and views used

to capture this common information could result in a synergistic effect and significantly

improve the value and quality of the information, models, and products generated.

Furthermore, introduction of a data exchange specification could provide the framework

necessary to integrate these products across organizational boundaries, enabling all

participating stakeholders to better communicate and leverage each other’s information

and concepts. This framework could then support more commonality across the various

stakeholders, such as adoption of SysML.

Once a capability gap is identified and translated to mission-level requirements,

and a concept for a material solution is selected, the process of standing up a SMC

program office and formulating an acquisition program/strategy is initiated. Although the

details and composition of the program office are new at this stage in the lifecycle, the

information basis associated with the requirements and the system concept should be well

defined and available. In order to avoid duplication of effort and to maximize efficiency,

the same standard models and views defined by MBSE principles and used by AFSPC

and the developmental organizations to capture these requirements and mission concepts

should be flowed to the emerging SMC program office. Again, this flow of MBSE

standardized models, views, and system definitions would be made possible through

application of a data exchange specification.

The value-added to a program office (and ultimately the Space Acquisition

Enterprise) through the use of MBSE principles and data exchange specification concepts

as described above increases exponentially as the system descriptions, architectures,

models, and views are further flowed down and connected to other key stakeholders, such

as the prime and sub-contractors, maintainers, and ultimately back to the operators and

users. Furthermore, by expanding MBSE and the utilization of a data exchange

specification across the Space Acquisition Enterprise and for each SMC program office,

 90

other SMC staff organizations such as the Program Management and Integration

Directorate and the Engineering and Architectures Directorate could provide significantly

improved cross-program support with the ability to compare products and correlate

heuristics and lessons learned between programs. In addition, these staff organizations

could more effectively communicate and support issues both between program offices

and to other stakeholders external to SMC such as Congress, AFSPC, and other DoD

product centers.

Through the proper application of model based systems engineering principles, in

conjunction with a data exchange specification, SMC and the Space Acquisition

Enterprise could realize significant improvements to its current processes. Models and

products of specific interest to and generated by each key stakeholder could be developed

and managed within their unique set of program management and systems engineering

applications and processes, improving the flexibility for the organization to meet their

specific needs while also leveraging the data, models, and products generated by other

key stakeholders. This integration of products and processes would set SMC (and the

DoD Space Acquisition community) on a path to alleviate the programmatic issues

currently plaguing the Space Acquisition Enterprise as a result of the inconsistent and

fragmented systems, tools, and products.

E. BARRIERS AND LIMITATIONS

Taking even this first step will not be easy. There are many potential barriers and

limitations—technical and non-technical—to implementing an enterprise-wide model

based systems engineering and data exchange specification initiative across the Space

and Missile Systems Center and likewise other DoD product centers.

Implementation of a data exchange specification is subject to many technical

challenges. In particular, any data exchange specification must interface with and

integrate many legacy systems and tools and is therefore subject to the governing rules,

restrictions, and shortcomings of each of these systems and tools. Each application has

its own unique specifications, routines, data structures, object classes, and protocols that

it uses to communicate within itself and between other applications. The introduction of

 91

data exchange protocols could be constrained by some of these unique application

properties, and even has the potential to negatively impact these properties and threaten

existing application functions. As it is integrated into these applications, systems, and

tools, a compliant model must also be implemented within the rules and structure of the

physical network and server environments of all key stakeholders, including military

organizations, contractors and external partners. Firewalls and other network

configuration settings currently restrict the flow of data between SMC and other

organizations and corporations such as the prime and subcontractors. Currently, these

firewall and network configuration settings even restrict the flow of some information

between SMC and its Federally Funded Research and Development Center (FFRDC)—

The Aerospace Corporation. A data exchange specification concept will also be subject

to a series of Air Force, DoD, and federal instructions, laws, policies, and directives

guiding and constraining its use. Table 6 lists some of the most critical of these

governing directives.

 92

AF/DoD/Federal Governing Directives
DOD Directive 8500.01 Information Assurance
DOD Directive 8300.02 Data Sharing in a Net-Centric Department of Defense
DOD Instruction 8520.2 Public Key Infrastructure (PKI) and Public Key (PK) Enabling
DOD Instruction 8500.2 Information Assurance (IA) Implementation
Federal Service Oriented Architecture (2008)
DOD Enterprise Services Designation (2009)
Air Force Enterprise Information Management CDD (2003)
Air Force Instruction 33-103: Requirements Development and Processing
Air Force Instruction 33-332: Privacy Act Information
DoD O-5200.1-I (Classified Publication): Index of Security Classification Guides (U)
Federal Information Systems Management Act (2002)
Federal Records Management Act
The Clinger-Cohen Act
Federal Acquisition Regulation (DFAR Sup)
Executive Order 13011, Federal Information Technology
OMB Circular A-130
Federal Enterprise (Information) Architecture Framework (1999)
Air Force Information and Data Management Strategy Policy (2004)
AF-CIO Policy Memorandum 04-12 Mandatory Use of Air Force Enterprise
Information Management Tool Suite (2004)
OSAF-XC Memo - Enterprise Information Management Tool Suite (2006)
AFSPC EIM Strategy (2008)

Table 6. Summary of Key Air Force, DoD, and Federal Information Technology
Governing Directives

In addition to the potential technical barriers and limitations facing the

implementation of a data exchange specification, there are several non-technical concerns

with implementing the model based systems engineering, data exchange, and SysML

concepts that must be considered. The concept of working to common models and views

as described by MBSE could meet cultural resistance within SMC, as it would involve a

significant change in the way the product center currently does business. There could

also be contractual limitations associated with the sharing of information between the

various program offices and their individual contractors and external partners. The

security and/or the proprietary nature of the information being exchanged between

various applications, and the classification level of the resultant aggregate information

presented by the application, could also be a concern from the government’s and

contractor’s perspective.

 93

Each organization has its own unique governance, policy, doctrine, and business

processes which must be adhered to. Introducing MBSE concepts, along with a data

exchange specification and/or the SysML language to existing processes and applications

could have an impact on how the using organization manages the tools, and ultimately

affect how decision makers within the organization interpret products generated by the

tools. By making some of the changes necessary to accommodate the introduction of

MBSE, other related processes or policies could suffer, and in some cases, these

necessary changes could be constrained completely by higher level policies. For

example, mandating a tool compliant with a specific data exchange specification within

SMC may not be consistent with existing coordination efforts outside of SMC; an Air

Force Space Command or DoD policy could require that the same information be

reported to them in a different format and through a different process. As a result, the

ability of SMC to modify its processes and manage the system acquisition through

common models as described by MBSE (and compliant with a data exchange

specification and SysML) may be constrained by processes at a higher organizational

level. This example serves to highlight the fact that a data exchange specification can

only effectively enable the application of MBSE practices, and SysML can only fully

optimize the MBSE practices, if all organizations and key stakeholders involved

uniformly adopt the standard and adjust their policies accordingly.

 94

THIS PAGE INTENTIONALLY LEFT BLANK

 95

VI. CONCLUSIONS AND RECOMMENDATIONS

A. RESPONSE TO RESEARCH QUESTIONS

The objective of this thesis was to explore the potential benefits of a MBSE

approach, in this case, using a structured architecture modeling language such as SysML

to develop and employ mission area architectures to DoD space systems. While detailed

answers to the specific research questions this thesis sought to answer (introduced in

Chapter I) have been discussed and provided throughout the body of this thesis, a

summary of answers to the research questions is provided here.

1. What Methods, Techniques, and Processes can be Employed to Aid in
the Development of Mission Area Architectures for Department of
Defense (DoD) Space Systems?

MBSE is a formalized approach to modeling and architecting a system that can be

used to represent all aspects of a system across the full system lifecycle. The Department

of Defense Architecture Framework provides the baseline structure and common data

meta-model specifications to develop mission area architectures for the DoD, including

space systems. Data exchange specifications, such as AP233, can be implemented across

a DoD organization to standardize the exchange of architecture and system data between

otherwise stove-piped organizational components, enabling synergistic benefits to data

analysis across the enterprise. Furthermore, there exist many structured techniques,

applications, and languages to enable and aid in the development and assessment of

detailed space system architecture, capturing the detailed interactions and

interdependencies within and throughout a system and enabling rigorous mathematical

analysis to support key programmatic decisions and needs, including the Structured

Analysis and Design Technique and the SysML.

2. In What Ways or in What Instances Can Model Based Systems
Engineering (MBSE) be Used in the Development of Space Based
Mission Area Architectures for the DoD?

The principles of model based systems engineering provide the framework for

organizations to select a set of interrelated models to help characterize and analyze a

 96

system and document the design, acquisition and sustainment process. Data exchange

specifications, such as AP233, can be mandated across the DoD to enable MBSE

practices and benefits across the enterprise. However, in order to realize the maximum

benefits of MBSE, including enhanced communications, reduced development risk,

improved quality, increased productivity, and enhanced knowledge transfer, a structured

architecture development technique such as the Structured Analysis and Design

Technique or SysML must be implemented across the DoD space community and used to

develop space based mission area architectures. Specific examples of MBSE principles

applied to the Overhead Persistent Infrared mission area architecture are provided within

the case study in Chapter IV of this thesis.

3. How can the System Modeling Language (SysML), Based on the
Common Software Engineering Unified Modeling Language (UML),
be Applied to Aid in Developing Mission Area Architectures for DoD
Space Systems?

A detailed example of the application of SysML, in conjunction with MBSE

principles, is provided for the OPIR mission area, and specifically modeled for the

SBIRS system. This executable SysML model, once complete and specified with

mathematical relationships, can be used to support rigorous engineering analysis. SysML

is consistent with the DoDAF specification and supports complete end-to-end realization

of MBSE practices and benefits throughout the acquisition lifecycle. Ultimately, the

overall quality of a system acquisition effort, or project, can be greatly improved through

the structured application of MBSE architecture, modeling and simulation, and trade

study activities—all enabled by the development of architecture using SysML.

B. PROCESS DISCUSSION

1. Discussion of the Iterative and Recursive Nature of the Synthesis
Process

Throughout the process of designing the SBIRS case study architecture presented

in this paper, many issues were encountered and many design decisions were re-

evaluated. After decomposing the system to the first level functional architecture, the

author of this thesis looked back at the external systems diagram and made design

 97

modifications to the inputs and outputs between the system, the user, and all external

information systems. As the decomposition and I/O of the functional architecture

evolved through multiple design iterations, so did the physical architecture and its

allocation to the system functions. Significant changes were also made to the allocation

of the physical components to the functional architecture during the definition of the

interfaces and links within the model. There were even minor design changes being made

during the definition and allocation of input/output and non-functional requirements to

the SBIRS design architecture. As this reiteration played out continuously throughout the

development of the SBIRS architecture, changes would not simply be limited to the

design architecture. Other iterative design modifications during and throughout the

synthesis process might include changes to the SBIRS concept of operations, including

modifications to the context diagram and use case scenarios to more accurately reflect the

type of information being exchanged between the key system stakeholders and external

systems.

2. Comments on the Use of MagicDraw

The use of a software tool such as MagicDraw is necessary, in this researcher’s

opinion, for conceptualizing and architecting a complex system such as SBIRS. The key

aspect of the software that makes it so critical in the design and architecture activities is

its affiliation with a central database of elements and their relationships. Since the design

of a complex system is very iterative and recursive, changes to the functions,

components, interfaces, links, inputs, outputs, controls, mechanisms, and many other

model relationships can be expected throughout the design process. Because of these

frequent changes, having the properties and relationships of each element centrally stored

in a database becomes critical to maintaining the integrity of the design, not to mention

tremendous savings in time and frustration.

Because of this database centric capability, an architecture and design tool such as

MagicDraw further shows its value by providing the designer with guidance in modeling

syntax and allowable relationships while providing the capability to generate a set of

consistent standardized models and diagrams from information provided to the same

 98

central database. This promotes common modeling syntax standards and patterns to aid

in communication of a design between multiple parties and disciplines—design

communication being a principle purpose of developing these models in the first place.

C. CONCLUSIONS

MBSE, in conjunction with SySML, can provide extremely powerful benefits to

the development of architectures and across the acquisition life cycle of DoD space

systems.

MBSE can provide additional rigor in the specification and design
process when implemented using appropriate methods and tools.
However, this rigor does not come without a price. Clearly,
transitioning to MBSE underscores the need for up-front investment in
processes, methods, tools, and training. It is expected that during the
transition, MBSE will be performed in combination with document-
based approaches. For example, the upgrade of a large, complex
legacy system still relies heavily on the legacy documentation, and
only parts of the system may be modeled. Careful tailoring of the
approach and scoping of the modeling effort is essential to meet the
needs of a particular project. (Friedenthal, Moore and Steiner 2012a,
20–21)

Adopting MBSE and SysML for the design of DoD space systems will require a

fundamental paradigm shift in how the DoD does business, transitioning from what is

now a purely document-driven approach. The implementation of a standard data

exchange specification can be applied to realize some enterprise benefits and aid in the

development of requirements for a more integrated and rigorous approach, such as

SysML. It is clear that such a paradigm shift is required if the DoD and its space

acquisition element, SMC, is to meet its requirements and realize the powerful benefits

promised by MBSE and SysML.

D. RECOMMENDATIONS

As discussed, significant value can be added to SMC and the space acquisition

enterprise in response to its requirements by adopting and pursuing a robust model based

systems engineering structure supplemented and enabled by endorsing a data exchange

specification such as the AP233 metadata model standard as a first step to full adoption

of MBSE and SysML. Although many potential barriers and limitations exist that may

 99

limit or impede the introduction of MBSE practices and the application of a data

exchange specification, it is recommended that SMC first moves towards the MBSE and

standard data exchange initiatives to realize both short and long term improvements in its

processes and decision making ability in support of the acquisition of DoD space

systems. As space systems become more and more complex, having robust processes

and clear system characterizations in place, as described by MBSE, will become

increasingly necessary to successfully design and acquire a space system. In order to

minimize the impact of the implementation barriers described, a phased approach is

proposed.

1. Phase 1

Since many of the issues currently plaguing SMC are related to the inconsistent

and fragmented set of tools and processes used within and between the various program

offices, the first incremental phase towards improving the efficiency of SMC’s

acquisition processes is to identify, list, and manage the configuration of all critical

program models, processes, and tools used throughout the center. This short term goal

will not only help SMC better understand where and how the program management and

systems engineering functions are executed and tracked by the various program offices,

but it will also identify where common models, processes, and tools can be adopted and

standardized in the future. This will be the first step in identifying the set of models and

views that will meet the requirements of SMC and shape the eventual MBSE structure.

2. Phase 2

Once the current models and processes have been identified, SMC should

integrate these models, processes, and tools across the many program offices, staff

directorates, and external partners, including the prime contractors, The Aerospace

Corporation, and Air Force Space Command, using the principles of MBSE and the

capabilities of a standard data exchange specification, such as AP233. Realizing this will

require several incremental milestones and will involve significant communication and

coordination between a wide range of different organizations, but if SMC begins to

advocate for model based systems engineering and endorses a standard data exchange

 100

specification now, the significant improvements to SMC and the Space Acquisition

Enterprise discussed within this paper could eventually become a reality. Furthermore,

understanding of the requirements for implementing SysML across the enterprise will be

much more complete and clear following the implementation of a standard data exchange

specification.

3. Phase 3

While great progress could be made to current processes used in space system

acquisitions, simply implementing a data exchange specification would not

fundamentally improve how information is managed at the component level. Great

strides can be made to improving the enterprise if the community can make the transition

from a document-based system, as described earlier and effectively left un-changed with

the adoption of just a data exchange specification, to a true model based system as

prescribed by MBSE. In order to achieve this, a common language must be adopted

across the DoD space acquisition enterprise that focuses on not just assessing but also

generating and developing program data and architectures using MBSE tools and

techniques.

Given adoption of MBSE practices, and the relaxation of the barriers between the

many varied stakeholders of SMC and the larger DoD Space Acquisition Enterprise, the

community should consider further standardizing its implementation of MBSE practices

by enforcing common processes, standards, models, tools, and techniques across the

community. As discussed within this paper, the SysML modeling language is uniquely

suited to meet this demand. With the enterprise-wide adoption of MBSE practices and

the standard SysML language, the DoD Space Acquisition community could truly realize

all of the powerful benefits described within this paper, and ultimately deliver more

successful systems through more effective acquisition efforts.

E. FUTURE WORK

The SysML architecture model and MBSE practices described herein are

ultimately only as useful to an organization as the underlying data that they represent is

complete, clear, stable, and consistent. Therefore, further study would assess techniques

 101

and methods for assessing the quality of the SysML architecture itself and the relative

maturity of the MBSE products and practices. The applicability of architecture

assessment methods, such as those introduced by Kristin Giammarco in “Formal Methods

for Architecture Model Assessment in Systems Engineering” (2010) and “Architecture

Model Based Interoperability Assessment” (Giammarco, Architecture Model Based

Interoperability Assessment 2012) to the MBSE and SysML architecture techniques

described in this report could be further studied. The system architecture heuristics

provided in the Appendix could then be quantified and applied precisely to assess the

quality of the architecture and models developed using SysML and MBSE.

 102

THIS PAGE INTENTIONALLY LEFT BLANK

 103

APPENDIX. THE ART OF SYSTEM ARCHITECTURE—
HEURISTICS

As “the format of heuristics is words expressed in the natural languages” (Maier

and Rechtin 2009, 31) the 10 heuristics provided in this appendix are written in the first

person and refer to real-life examples and experiences of the author of this report. As

such, the writing style used differs drastically from that of the body of this report, as is

suitable for use when discussing heuristics

1. Focus on User Interactions and Interfaces

A system is not likely to be accepted by a user if the user’s interaction with the

system is not intuitive and what they would expect from a similar system. When

architecting, pay particular attention to how the user will interact and interface with the

system. Imagine how the system would “feel” in the hands of a user, put yourself in the

user’s shoes, and ask yourself how you would expect to interact with the system.

a. Discussion

I am a longtime fan of Nintendo and have owned nearly every gaming

system they have produced over the years. Of these systems, I have always been

particularly interested in their portable gaming platforms and have owned everything

from a classic Game Boy to a Nintendo DS. I recently purchased the Nintendo DSi XL.

Immediately after removing the product from the box, I was struck by this architecture

principle.

All DS systems have two display screens that open about a central hinge

holding the two together. When I opened my new Nintendo DSi XL, I immediately

noticed that the hinge holding the two screens together was loose, causing the system to

wobble during play. While all previous versions of the DS system (DS, DS Lite, and the

DSi) had the same basic screen design, the DSi XL is the first to exhibit this wobble at

the hinge. As alluded by the “XL” in its name, the primary difference between the DSi

XL and its predecessor, the DSi, is the increased size of the gaming system and size of

the display screens (an increase of 93 percent). However, while they increased the size of

 104

the display screens by 93 percent, Nintendo did not redesign the hinge to account for the

additional weight of the top screen caused by its larger size.

Had the system architect focused more on the components with which the

user was interacting directly, he or she may have noted the connection between the screen

size and the hinge design. While all other aspects of the new system were clearly an

improvement from its predecessor, the DSi, the wobble of the screen became quickly

apparent and was not what I expected to “feel” when using the system. My acceptance of

the system was therefore threatened by the uncharacteristic and unexpected behavior of a

critical system component that I came in direct contact with each time I used the system.

I observe this very same principle daily as I surf the Web. After accessing

common web services, such as those used for banking, searching, shopping, as well as

online encyclopedias, I come to expect a particular “look and feel” when accessing other

similar Web services. If the user interface’s design of these services is radically different

than others, I have a tendency to quickly reject that system or service as a result.

2. Maximize Cohesion

Assign specific responsibilities and scope to the system elements, and stick to

them! Individual aspects of a system architecture must be clearly focused to ensure that

they are understandable, manageable, and supportive of an open and robust system

design. Highly cohesive architecture elements are understandable and manageable

because they comprise similar functions, activities, or operations and “bucket” them

logically. They support an open and robust system design because they can be

complemented by other cohesive elements to meet future requirements by reducing the

number of interfaces and supporting low coupling within the system. When developing

system architecture, clearly define the purpose and scope of each element of the

architecture. When data items, functions, activities, or other elements need to be added to

the system, assign those elements to a component that is closely related to that element or

that serves a similar purpose. If the new element does not easily fit within a currently

defined “bucket,” consider creating a new “bucket” or component to host that element.

Avoid the tendency to group activities, functions, data items, or other elements that are

 105

not closely related as this has the potential to increase the coupling and therefore the

complexity of the system. This increased complexity will likely result in increased cost,

schedule, and performance risk. If a new capability is desired and does not fit the initial

scope, do not attempt to significantly modify or expand an existing element once the

system has been implemented based on highly cohesive elements (Larman 2005, 314–

317). This also related to the heuristic: “Group elements that are strongly related to each

other, separate elements that are unrelated” (Maier and Rechtin 2009, 402).

a. Discussion

About a year ago, when I first arrived at my current organization, I noticed

a shortfall in the way my organization was managing and promoting training and

education opportunities to members of the organization. As a result, I talked to the

training managers to derive requirements for a system that could help fill this gap. After

talking to the training managers and several other stakeholders, including other members

of the organization and the organization’s leadership, I determined that I would construct

a capability on the organization’s intranet site for the training managers to post

information about upcoming training and education opportunities and advertise these to

the organization. The initial scope of this application was as an information and

advertising capability only.

Eventually, this capability was adapted by the organization and was such a

success that recently an additional requirement to add a registration capability to the

training list was proposed. The initial development effort to accommodate this new

requirement encountered significant challenges since registering for a course proved to be

quite different in functionality than simply listing and advertising the courses. It was

quickly realized that trying to modify and add onto the existing training list capability

would not be possible without negatively impacting aspects of the list that met its original

requirements and scope. Trying to incorporate both of these functions in a single element

did not support high cohesion. As a result, the design was not manageable or open/robust

to future design.

 106

3. Minimize Coupling

Minimize the dependency of one system component on other system components.

The more dependencies that exist between one system, activity, function, or data object

and another, the more complex the system becomes and the more likely it is to fail. If

one element relies heavily on another element and the configuration of that element

changes, there will likely be an impact to the dependent element. This dependency

makes the system not-conducive to change. Conversely, a system having elements with

low coupling supports an open and robust system design by means of reducing the

number of interfaces and therefore the complexity of the system. When architecting a

system, be sure to adhere also to Principle 2: High Cohesion. Highly cohesive elements

should, by definition, enforce low coupling between elements. Define activities,

functions, data items, systems, and other elements such that they depend on other

elements as little as possible. If changes are required of the system to satisfy a future

requirement, follow this same principle to ensure that changes to one element have a

minimal impact on other system elements. Pay particular attention to any dependencies

between elements as system modifications are made and ensure that these dependencies

are not adversely affected by the changes (Larman 2005, 299–302). This also relates to

the heuristic: “Choose a configuration with minimal communications between the

subsystems” (Maier and Rechtin 2009, 402).

a. Discussion

Returning to my compulsive tendency to dissect and criticize systems and

analyze their designs, I recently purchased a digital wrist watch to time my 1.5 mile run

in preparation for my Air Force physical fitness test. I couldn’t help but notice a

violation of this principle in the software design of the watch. The stopwatch function of

the watch has a split display—one half showing the actual timer used while running and

the other displaying the function in question. Before starting the timer in the stopwatch

function, the top display shows the current time. This is useful for connecting back to the

real world if, for instance, a meeting is approaching and I need to ensure that I stop

exercising by a certain time in order to make the meeting. The stopwatch also uses the

 107

top display for another function – the ability to set an alarm when a specified time is

reached by the timer. This is useful for providing feedback on meeting my run time

goals.

Although both functions of the top display are useful, they are coupled in

such a way that they become practically useless. This is because the first function—

displaying the current time—only shows prior to starting the timer while the second

function—displaying the alarm time—only shows while the timer is running. This is

exactly opposite of what would be expected since the user is concerned with the real

world time while running and sets the alarm time prior to starting the run. The way these

two functions are coupled with the stopwatch timer function results in greater system

complexity and, in this case, makes two otherwise very useful functions practically

useless.

4. Don’t Forget Implementation Planning

You can design the best system possible, but if it is not implemented properly, it

could still fail. Even a “perfect” system can fail if not implemented at the proper time, in

the proper environment, or with the proper configuration and support behind it. Early

planning for how a system is to be deployed will shape the entire design effort by

defining how to phase the system, set the schedule, and “sell” the system to its key

stakeholders.

The moment a system or product is conceived and a concept developed, well

before a comprehensive architecture effort, planning the implementation of the system

must begin. This planning includes determining when to deploy certain aspects of the

system, within which environment to deploy them, how maintenance and upgrades to the

system will be conducted, and other business concerns related to the system’s design and

implementation. This implementation planning must be conducted throughout the

lifecycle of the system—”from cradle to grave”—and should be updated and evolved

iteratively and recursively with time. This principle is related to the heuristics: “Good

products are not enough. Implementations matter” (Morris 1993) and “If social

 108

cooperation is required, the way in which a system is implemented and introduced must

be an integral part of its architecture” (Maier and Rechtin 2009, 398).

a. Discussion

I have observed numerous products and systems developed and

implemented at Los Angeles Air Force Base that have failed to achieve their full potential

due to inadequate implementation planning. Some great systems are designed and

developed for use across the LAAFB community only to find that they are not accessible

by a group of critical stakeholders who support the project from another organization

external to the LAAFB network. This is an example of not implementing the system in

the proper environment or not planning for the environment properly.

Another common failure mode of otherwise successful systems is not

implementing them at the right time. There are many systems that get locked in

development due to requirements creep and other issues such that when they are finally

deployed, the environment and user requirements have changed enough to significantly

degrade the usefulness of the system or even make it completely obsolete. Early

implementation planning for how to phase the deployment of the system could have

combated this failure mode by clearly defining an implementation schedule.

Other issues occur when a system is not “sold” or marketed appropriately

to its users. Many of the information systems to which I am referring critically rely on a

large community using the system to ensure the information is fresh and complete. If the

system is not integrated into current business and technical processes, or critical users are

simply not made aware of the system’s existence, the product is likely to fail as a result.

5. Cannot Optimize for all Stakeholders

You cannot make everyone happy. A complex system cannot equally satisfy and

completely meet the needs of all stakeholders. As more requirements are gathered from

more and more stakeholders, competing requirements arise for which fully meeting one

requirement could result in not meeting another.

 109

Focus on meeting the needs of the key stakeholders first since their acceptance of

the system will be critical to success. A “balancing act” must be played to reach a

common ground with stakeholder requirements and expectations when these

requirements compete with one another. Always be honest with the stakeholders as

promises are made to meet specific requirements, particularly when making trade-offs to

meet or optimize some requirements at the expense of others. This principle is related to

the heuristic: “No complex system can be optimum to all parties concerned, nor all

functions optimized” (Maier and Rechtin 2009, 399).

a. Discussion

For complex systems, it is natural for there to be many different

stakeholders having very different viewpoints and expectations from the proposed

system. I often ask myself, “Why did they design the system this way?” or “Why didn’t

they put this function in the system?” as well as find myself saying, “This function is

useless to me!” Before, I would be relentlessly critical of the systems for which I would

make these comments—quickly rejecting the system as a “piece of junk.” Now that I am

becoming a trained architect and can take a step back to see the system from a higher

level, I am more careful not to jump to the conclusion that the system is a “piece of junk”

but to first consider the possibility that I am simply not among the stakeholder group on

which the system was primarily focused.

Accepting the fact that a system has features that are useless to me or that

it does not have features that I believe it should have is difficult to do; however, I can

now appreciate the fact that the selection of these features was likely directed towards a

specific audience and perhaps is not the correct system for me. An example of this idea

is the iPod. Apple designs its products, such as the iPod, to have the simplest user

interface possible, often at the expense of including useful features up front. When

listening to music, I prefer a variety and therefore find myself using the “shuffle” feature

frequently. Since this is one of the most useful features to me, it would be ideal if I could

easily toggle the shuffle option with one motion such as by flipping a switch on the

device itself. While some systems have this option, the iPod does not since having this

 110

button on the device would detract from a more critical requirement for the product—a

simple and clean aesthetic appearance. Of course it would be foolish to reject the iPod as

a failed system because of this feature, since history shows that Apple has been extremely

successful with the iPod system.

6. Diverse Perspectives

Embrace different opinions. It takes a diverse team of individuals to develop the

best systems. Throughout the design and development of a product, system, or service,

members of a team will have different perspectives and opinions that influence the design

of the system. Only when these diverse perspectives are managed properly can the

greatest potential system be realized.

When working with a team of individuals on designing, architecting, and fielding

a system, it is crucial that a leader be present to encourage the free exchange of diverse

ideas and options related to every aspect of the system. Lead a system design by opening

the table to this diversity. Ask targeted questions often to facilitate the exchange of these

different perspectives. Adhere to this principle throughout the design of the system and

success will be within reach. Ignore it, and failure is likely. This principle relates to the

heuristic: “If you think your design is perfect, it’s only because you haven’t shown it to

someone else” (Harry Hillaker 1993, quoted in Maier and Rechtin 2009, 405).

a. Discussion

Throughout my career and professional development, and more recently

while working on group projects for my ’master’s degree program, I have learned that

there are always multiple ways to look at and interpret a problem. As a team progresses

though the natural team building model (forming, storming, norming, and performing), I

become more and more open to the different opinions and perspectives of my teammates.

Being more open and embracing these different perspectives has resulted in us more

accurately defining the problem, collecting a pool of potential solutions, and evaluating

each potential solution, and it has ultimately resulted in a better product than could have

been obtained from an individual effort.

 111

Working with and accommodating for these diverse perspectives is rarely

easy and must be approached delicately to maintain an effective working relationship

between individuals. In early discussions, it is ideal to brainstorm as many different ideas

as possible; however, eventually a consensus must be reached and a decision must be

made that, by definition, will not fully satisfy the opinions of all parties. These decision

trade-offs are made throughout a system’s design and are possibly the most critical

leadership challenge for managing a program. If managed properly, adhering to this

principle can bring about huge dividends for the system in the long run. If not managed

properly or if this principle is not adopted, it is unlikely that the optimal system will be

achieved.

7. Maximize Alternatives

Once you make a decision and continue the design effort based on that decision,

you are likely stuck with it for the life of the system. The more alternatives and options

you can come up with, the more likely you are to come up with the best one.

While designing and architecting a system, come up with as many alternative

solutions to every problem as possible and as time permits, and hold on to those

alternatives until a decision absolutely must be made to move forward. This principle is

related to the heuristic: “Build in and maintain options as long as possible in the design

and build of complex systems. You will need them. OR… Hang on to the agony of

decision as long as possible” (Robert Spinrad 1988, quoted in Maier and Rechtin 2009,

40).

a. Discussion

I tend to be a naturally indecisive person, a characteristic that I’ve

identified to be both strength and weakness in myself. Indecisiveness can be a weakness

in a leader if decisions are never made resulting in a lack of guidance and direction, but

indecisiveness can also be a strength when it encourages developing a complete

understanding of a problem and trying to arrive at the best possible solution to that

problem. An effective leader must balance this with cost, schedule, and other

 112

programmatic issues to arrive at as many different alternative solutions as possible and

hold onto those alternatives as long as practical.

Holding onto these alternatives and delaying a decision as long as

practical (cost and schedule considered) can bring benefits to that decision, since the

more defined the system architecture becomes, the more the architect will be able to

understand and comprehend the significance and impact of that decision. The bottom

line is: the longer you wait to make the decision, the better you understand the problem

and impact of the decision; therefore, it follows that a better decision can be made since it

is based on better understanding and more information.

Once that decision is made and subsequent decisions are made based on it,

it becomes more and more difficult to reverse or change that decision without resulting in

significant rework and redesign. Since schedule will always play an important role in a

successful system, there is rarely the time or money to go back and change a decision and

accomplish this rework; therefore, every decision made in the design and architecture of a

system causes exponential residual effects to ripple throughout the system design. It is

therefore critical to get those decisions right the first time. Coming up with as many

alternatives as possible and delaying the selection from among the alternatives as long as

possible increases the chances of making the best possible decisions and therefore the

best possible system.

8. Use Prototypes to Refine Requirements

Users do not know what they need until they can put their hands on it. A user’s

stated requirements might be what they want at the time, but what they really “need” is

another matter. Only once users can touch and feel a system and criticize its design do

they truly start defining their needs.

As a means of further understanding requirements and refining user needs and

expectations, develop early prototypes of the system or elements of the system. Involve

the users and other key stakeholders in testing and operating these prototypes and keep an

open ear to their comments, concerns, frustrations, and desires. Accurate requirements

can be extracted whether the prototypes meet or do not meet the user’s needs and

 113

expectations. Involve the users in this way throughout the development of the system to

maximize the chances of success. This principle is related to the heuristics: “The phrase,

“I hate it,” is direction” (Lori I. Gradous 1993, quoted in Maier and Rechtin 2009, 270)

and “The most important single element of success is to listen closely to what the

customer perceives as his requirements and to have the will and ability to be responsive”

(J. E. Steiner 1978, quoted in Maier and Rechtin 2009, 270).

a. Discussion

As I have developed web services and applications for users at Los

Angeles Air Force Base, I have found that using rapid prototyping is by far the best and

most efficient way to extract user requirements. The users rarely know what they are

looking for until they have a basic user interface or picture to look at and poke holes in.

They very quickly begin making comments like “you forgot to add this,” “this belongs

here, not here,” and “I don’t like the look of that.” Whether they know it or not, these

comments are very powerful requirements influencing the design of the eventual system.

I listen carefully and take notes during these interactions and then return to the drawing

board to incorporate changes to the prototype based on these comments. I then return to

the user with the updated prototype and repeat the process to further refine the user’s

requirements and expectations of the system. Once the criticisms thin and the user begins

to like the system more and more, the first (or next iterative) version of the system can be

fully developed and deployed.

In addition to helping the user define their requirements and the developer

meet the true needs of the user, using rapid prototyping in this way also helps to scope the

user’s expectations of the system to be delivered. He or she will have a better mental

picture of what the system will look like and how it will function since he or she was

closely involved with its design. The user will also be more likely to accept the system as

he or she develops a sense of ownership for it. Since the user was involved throughout

the requirements refinement and design process, he or she is more likely to say, “I

designed this system” and “This is my system.” This distinction is very important for

 114

system acceptance and implementation since without that sense of ownership, the system

is likely to fail.

9. Iterative and Recursive

Although a decision made early in the architecture process may seem trivial, the

impacts of that decision, made clear further down the road, could change your

perspective completely. In order to fully understand and adequately capture a system, the

architecture must be developed iteratively and recursively.

When architecting a system, it is important to keep an open mind and remain

flexible to evolution and change as the architect’s vision of the system becomes more and

more clear. At each level of architecture, and while the system is further and further

decomposed, the architect must take a step back to re-evaluate and improve the design at

higher levels based on the enhanced understanding of the system gathered from diving

down into the lower levels.

a. Discussion

Throughout the process of designing the SBIRS architecture, many issues

were encountered and many design decisions were re-evaluated. After decomposing the

SBIRS system to the first level, I looked back at the external systems diagram and made

design modifications to the inputs and outputs between the SBIRS system, the user, and

all external information systems. As the decomposition and I/O of the functional

architecture evolved through multiple design iterations, so did the physical architecture

and its allocation to the system functions. As this reiteration played out continuously

throughout the development of the SBIRS architecture, changes were not limited to only

the design architecture. Other iterative design modifications made during the synthesis

process included changes to the SBIRS concept of operations, including modifications to

the use case scenarios to more accurately reflect the type of information being exchanged

between the key system stakeholders and external systems.

 115

10. Modular Design

Carefully applied component commonality equals significant lifecycle cost

savings. Long-term cost savings and performance benefits can be realized by a system

and its related systems through the use of an open, modular design.

When architecting a system, choose components such that they support the

principles of high cohesion (Principle 2), low coupling (Principle 3), and maximize

commonality so they can be re-used or repurposed within the system being designed as

well as in other related systems. This principle is related to the heuristics: “Use open

architectures. You will need them once the market starts to respond.” and “Relationships

among the elements are what give systems their added value” (Maier and Rechtin 2009,

399).

a. Discussion

Great benefits can be realized by families of systems having components

with high commonality. These common components support an open, modular design

and can be more easily replaced, updated, and re-used. This commonality has the

potential to result in significant cost savings for maintaining the system and can greatly

reduce the logistics footprint of it and other related systems, resulting in additional cost

savings and increased supportability.

An example of this principle is a family of power tools from the same

company. I have a power tool kit that includes a drill, circular saw, sander, radial arm

saw, and flashlight all from the same company and manufacturer. Although this kit

contains five distinctly different systems they all have one thing in common—the

rechargeable battery power supply. I can easily remove the power supply from a power

tool and plug it into a recharger (another common system) or transfer it to another power

tool. Having this common power supply reduced the cost of the power tool kit since I

only had to purchase two power supplies (really only one was necessary, but a back-up is

always nice to have) for the five power tools rather than one for each. The cost of the

system was likely further reduced by minimizing the complexity of designing,

manufacturing, packaging, handling, and shipping the power tool kit.

 116

Further benefits can be seen in the maintenance and logistics of the

modular family of power tools. If one of the power supplies fails and needs to be

replaced, I can simply purchase another power supply. I can avoid untimely and

expensive repairs on a specific power tool since the power supply has been de-coupled

from the architecture of the tool itself. Also, if I require a power supply with a greater

battery life, I can purchase an upgraded power supply, again without changing or

impacting the tool itself. The maintenance of each system is therefore greatly simplified

as a result of its modular design, resulting in even more cost savings. The logistics

footprint of storing and transporting the set of power tools is reduced, since I only have to

store and haul two power supplies instead of five or more.

 117

LIST OF REFERENCES

Atego Corporation. 2013.“Artisan Studio.” Atego Website. Accessed September 10, 2013
http://www.atego.com/products/artisan-studio.

Baker, Loyd, and Ann Christian. 2013. “Requirements Development and Management
Using Models.” Vitech Corporation. Accessed 10 September, 2013
http://www.vitechcorp.com/resources/technical_papers/200701031634140.baker_
christian.pdf.

Baker, Loyd, Paul Clemente, Bob Cohen, Larry Permenter, Byron Purves, and Pete
Salmon. 2013. “Foundational Concepts for Model Driven System Design.”
Accessed 10 September, 2013
http://www.vitechcorp.com/resources/technical_papers/200701031636590.baker_
etal96.pdf.

Bruring, Pieter. 2009. “Linking CORE with MS Project. Aircraft Development and
Systems Engineering (ADSE).” Blacksburg, VA: Vitech Corporation.

Defense Acquistion University. 2013a. “3.3: Analysis of Alternatives.” In Defense
Acquisition Guidebook. Accessed 10 September, 2013
https://acc.dau.mil/CommunityBrowser.aspx?id=488336&lang=en-US.

———. 2013b.“4.3.12: Architecture Design Process.” In Defense Acquisition
Guidebook.. Accessed 10 September, 2013
https://acc.dau.mil/CommunityBrowser.aspx?id=638341&lang=en-US.

———. 2013c. “4.3.19.1: Modeling and Simulation.” In Defense Acquisition Guidebook.
Accessed 10 September, 2013
https://acc.dau.mil/CommunityBrowser.aspx?id=638373&lang=en-US.

———. 2013d. “7.2.5: DoD Enterprise Architecture-Related Guidance.” In Defense
Acquisition Guidebook. Accessed 10 September, 2013
https://acc.dau.mil/CommunityBrowser.aspx?id=511597&lang=en-US.

———. 2013e. “Chapter 4: Systems Engineering Processes.” In Defense Acquisition
Guidebook. Accessed 10 September, 2013
https://acc.dau.mil/CommunityBrowser.aspx?id=638325.

———. 2013f. “Defense Acquisition Management System: Technical “V” Activities.” In
Defense Acquisition Guidebook. Accessed 10 September, 2013
https://acc.dau.mil/CommunityBrowser.aspx?id=294550.

 118

———. 2013g. “Enclosure 12: Systems Engineering.” In Defense Acquisition
Guidebook. Accessed 10 September, 2013
https://acc.dau.mil/CommunityBrowser.aspx?id=332558&lang=en-US.

———. 2013h. “Operation of the Defense Acquisition System (DoD Instruction
5000.02).” Accessed 10 September, 2013
https://dap.dau.mil/aphome/das/Pages/Default.aspx .

———. 2013i. “Systems Engineering Process: Technical Management Processes.” In
Defense Acquisition Guidebook. Accessed 10 September, 2013
https://acc.dau.mil/CommunityBrowser.aspx?id=294549 .

———. 2013j. “SE Activities: Materiel Solution Analysis Phase.” In Defense Acqusition
Guidebook. Accessed 10 September, 2013
https://acc.dau.mil/CommunityBrowser.aspx?id=294551.

Department of Defense. 2009. DoD Architecture Framework Version 2.0: Architects
Guide. Department of Defense. Accessed 10 September, 2013
www.prim.osd.mil/Documents/DoDAF_2-0_web.pdf.

Elm, Joseph P. and Dennis R. Goldenson. 2012. The Business Case for Systems
Engineering Study: Results of the Systems Engineering Effectiveness Survey.
Pittsburgh, PA: Carnegie Mellon University.

Friedenthal, Sanford, Alan Moore, and Rick Steiner. 2012a. “Chapter 2: Model-Based
Systems Engineering.” In A Practical Guide to SysML - The Systems Modeling
Language, 15-27. Waltham, MA: Elsevier Inc..

———. 2012b. “Chapter 3: Getting Started with SysML.” In A Practical Guide to
SysML-The Systems Modeling Language, 29-49. Waltham, MA: Elsevier Inc..

———. 2012c. “Chapter 8: Modeling Constraints with Parametrics.” In A Practical
Guide to SysML-The Systems Modeling Language, 185-204. Waltham, MA:
Elsevier Inc..

Fusion Forge. 2013. “TOPCASED-SYSML.” Fusion Forge. Accessed 10 September,
2013 http://gforge.enseeiht.fr/projects/topcased-sysml/.

Gau Pagnanelli, Christi A., Barbara J. Sheeley, and Ronald S. Carson. 2012. “Model-
Based Systems Engineering in an Integrated Environment.” 22nd Annual
INCOSE International Symposium. Rome, Italy, July 2012..

Giammarco, Kristin. 2012. “Architecture Model Based Interoperability Assessment.”
PhD diss., Naval Postgraduate School, Monterey, CA.

 119

———. 2010. “Formal Methods for Architecture Model Asssessment in Systems
Engineering.” Paper presented at the 8th Annual Conference on Systems
Engineering Research. Hoboken, NJ.

International Business Machines (IBM). 2013.“Rational Tau.” IBM. Accessed 10
September, 2013 http://www-03.ibm.com/software/products/us/en/ratitau/.

———. 2013. “Rational Rhapsody Family.” IBM. Accessed 10 September, 2013
http://www-03.ibm.com/software/products/us/en/ratirhapfami.

International Council of Systems Engineering (INCOSE). 2011. “4.3: Architectural
Design Process.” In INCOSE Systems Engineering Handbook v. 3.2.2, 96-115.
San Diego, CA: International Council of Systems Engineering, 2011.

———. 2007. “Models and Model-based Systems Engineering.” In Systems Engineering
Vision 2020, 15. Technical Operations, INCOSE.

———. 2004. “What is Systems Engineering?”. Accessed 10 September, 2013
http://www.incose.org/practice/whatissystemseng.aspx.

Los Angeles Air Force Base. 2013. “Infrared Space Systems Directorate.” Los Angeles
Air Force Base. Accessed 10 September, 2013
http://www.losangeles.af.mil/library/factsheets/factsheet.asp?id=5330.

Larman, Craig. 2005. “Chapter 17: GRASP: Designing Objects with Responsibilities.” In
Applying UML and Patterns - An Introduction to Object-Oriented Analysis and
Design and Iterative Development, 271-319. Upper Saddle River, NJ: Prentice
Hall.

Liston, Paul, Kamil Erkan Kabak, Peter Dungan, James Byrne, Paul Young, and Cathal
Heavey. 2010. “Chapter 11: An Evaluation of SysML to Support Simulation
Modeling.” In Conceptual Modeling for Discrete-Event Simulation, by Stewart
Robinson, Roger Brooks, Kathy Kotiadis and Durk-Jouke van der Zee, 279-307.
CRC Press..

Long, Dave. 2010. “Lecture 7: Process/Activity Modeling.” Lecture, Air Force Institute
of Technology, Wright-Patterson Air Force Base, OH.

Long, David and Scott Zane. 2011a. “Language: The Systems Model Is Language-
Based.” In A Primer For Model-Based Systems Engineering (2nd ed.), 37.
Blacksburg, VA: Vitech Corporation.

———. 2011b. “Characteristics of a Model.” In A Primer For Model-Based Systems
Engineering (2nd ed.), 33. Blacksburg, VA: Vitech Corporation.

———. 2011c. “Four Elements of a Model.” In A Primer For Model-Based Systems
Engineering (2nd ed.), 32. Blacksburg, VA: Vitech Corporation.

 120

———. 2011d. “Verification and Validation.” In A Primer For Model-Based Systems
Engineering (2nd ed.), 98. Blacksburg, VA: Vitech Corporation.

———. 2011e. “What is a Model?” In A Primer For Model-Based Systems Engineering
(2nd ed.), 31. Blacksburg, VA: Vitech Corporation.

Maier, Mark W., and Eberhardt Rechtin. 2009. The Art of Systems Architecting (3rd ed.).
Buca Raton, FL: CRC Press.

Merriam-Webster Dictionary. 2013. “Heuristic.” 2013. Accessed 10 September, 2013
http://www.merriam-webster.com/dictionary/heuristic.

Modelio Modeling Solutions. 2013. “SysML Architect.” Modelio Store. Accessed 10
September, 2013 http://www.modeliosoft.com/en/modelio-
store/modules/modeling-extensions/sysml-architect.html.

Morris, C. R. and Ferguson, C. H. 1993. “How Architecture Wins Technology Wars.”
Harvard Business Review. Accessed 10 September, 2013
http://www.churbuck.com/david/Personal/Standards%20Book/Morris%20and%2
0Ferguson%20on%20Architecture.pdf.

No Magic, Incorporated. 2013. “Magic Draw.” No Magic, Incorporated. Accessed 10
September, 2013 http://www.nomagic.com/products/magicdraw.html..

Object Management Group. 2012. OMG Systems Modeling Language v. 1.3. Object
Management Group. Accessed 10 September, 2013
http://www.omg.org/spec/SysML/1.3/.

———. 2010. “SysML and AP233 Mapping Activity.” OMG SysML Portal. Accessed
10 September, 2013 http://www.omgwiki.org/OMGSysML/doku.php?id=sysml-
ap233:mapping_between_sysml_and_ap233.

Object Management Group, Sparx Systems. 2007. “MDA Overview.” Sparx Systems.
Accessed 10 September, 2013 http://www.omg.org/mda/mda_files/MDA_Tool-
Sparx-Systmes.pdf.

Papyrus UML website. 2013. Accessed 10 September, 2013 http://www.papyrusuml.org/.

Sage, Andrew P., and William B. Rouse. 2011. Handbook of Systems Engineering and
Management. Hoboken, NJ: John Wiley and Sons.

Sparx Systems. 2013. “Enterprise Architect.” Sparx Systems. Accessed 10 September,
2013 http://www.sparxsystems.com/.

Vitech Corporation. 2013. “SysML Modeling.” Vitech Corporation. Accessed 10
September, 2013 http://www.vitechcorp.com/solutions/SysML-Modeling.shtml.

 121

U'Ren, Jim. 2003. “An Overview of AP233 - STEP's Systems Engineering Standard.”
Presentation for AP233 Working Group, Defense Technical Information Center
6th Annual System Engineering Conference. 20 October 2003. Accessed 10
September, 2013 http://www.dtic.mil/ndia/2003systems/slides.ppt.

 122

THIS PAGE LEFT INTENTIONALLY BLANK

 123

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	NAVAL
	POSTGRADUATE
	SCHOOL
	I. INTRODUCTION
	A. problem statement and objective
	B. RESEARCH QUESTIONS
	C. BENEFITS OF STUDY

	II. dod acquisition and systems engineering processes
	III. model based systems engineering and the SYSTEMS MODELING LANGUAGE FOR systems engineering and ARCHITECTURE DEVELOPMENT
	A. System Models
	B. Model Based Systems Engineering
	C. system architecture design and development
	D. Why focus on System Architecture and Trade Studies?
	E. modeling and simulation
	F. Analysis of Alternatives
	G. MBSE Architecture Tools and techniques
	1. Department of Defense Architecture Framework (DoDAF)
	2. Structured Analysis and Design Technique
	3. Systems Modeling Language (SySML)
	a. History of SysML
	b. Overview of SysML
	c. SysML Purpose and Key Features
	d. SysML Support to Modeling and Simulation
	e. SysML Tools

	IV. CASE STUDY—OVERHEAD PERSISTENT INFRARED (OPIR) MISSION AREA ARCHITECTURE
	A. Purpose
	B. Scope
	C. Problem Summary
	D. SYsml diagrams
	1. Internal Block Diagram—System Context
	2. Use Case Diagram—Top Level
	3. Use Case Diagram—Operational Level
	4. Sequence Diagram—Initialize Black Box
	5. State Machine Diagram—Spacecraft Operational States
	6. Decomposed Sequence Diagrams
	7. Requirements Diagrams
	8. Activity Diagrams
	9. Block Definition Diagrams
	10. Parametric Diagrams and Performance Analysis

	E. architecture development—heuristics

	V. implementation of model based systems engineering and enterprise systems engineering techniques at the space and missiles system center
	A. Transitioning to MBSE
	B. data exchange specifications
	C. Smc requirements and current tools
	1. Current SMC Tools and Processes
	2. SMC Requirements

	D. potential value of mbse and Data exchange specification to smc
	E. barriers and limitations

	VI. CONCLUSIONS AND RECOMMENDATIONS
	A. response to RESEARCH QUESTIONS
	1. What Methods, Techniques, and Processes can be Employed to Aid in the Development of Mission Area Architectures for Department of Defense (DoD) Space Systems?
	2. In What Ways or in What Instances Can Model Based Systems Engineering (MBSE) be Used in the Development of Space Based Mission Area Architectures for the DoD?
	3. How can the System Modeling Language (SysML), Based on the Common Software Engineering Unified Modeling Language (UML), be Applied to Aid in Developing Mission Area Architectures for DoD Space Systems?

	B. process discussion
	1. Discussion of the Iterative and Recursive Nature of the Synthesis Process
	2. Comments on the Use of MagicDraw

	C. conclusions
	D. Recommendations
	1. Phase 1
	2. Phase 2
	3. Phase 3

	E. Future work

	appendix. The Art of System Architecture—heuristics
	1. Focus on User Interactions and Interfaces
	a. Discussion

	2. Maximize Cohesion
	a. Discussion

	3. Minimize Coupling
	a. Discussion

	4. Don’t Forget Implementation Planning
	a. Discussion

	5. Cannot Optimize for all Stakeholders
	a. Discussion

	6. Diverse Perspectives
	a. Discussion

	7. Maximize Alternatives
	a. Discussion

	8. Use Prototypes to Refine Requirements
	a. Discussion

	9. Iterative and Recursive
	a. Discussion

	10. Modular Design
	a. Discussion

	List of References
	Initial Distribution List

